• Photonics Research
  • Vol. 9, Issue 12, 2351 (2021)
Olena Kovalenko1、*, Young-Sik Ra2、3, Yin Cai2、4、5, Vladyslav C. Usenko1, Claude Fabre2, Nicolas Treps2, and Radim Filip1
Author Affiliations
  • 1Department of Optics, Palacky University, 77146 Olomouc, Czech Republic
  • 2Laboratoire Kastler Brossel, Sorbonne Université, CNRS, ENS-Université PSL, Collège de France, 75252 Paris, France
  • 3Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
  • 4Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Laboratory of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049, China
  • 5e-mail: caiyin@xjtu.edu.cn
  • show less
    DOI: 10.1364/PRJ.434979 Cite this Article Set citation alerts
    Olena Kovalenko, Young-Sik Ra, Yin Cai, Vladyslav C. Usenko, Claude Fabre, Nicolas Treps, Radim Filip. Frequency-multiplexed entanglement for continuous-variable quantum key distribution[J]. Photonics Research, 2021, 9(12): 2351 Copy Citation Text show less
    References

    [1] S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck, D. Englund, T. Gehring, C. Lupo, C. Ottaviani, J. L. Pereira, M. Razavi, J. S. Shaari, M. Tomamichel, V. C. Usenko, G. Vallone, P. Villoresi, P. Wallden. Advances in quantum cryptography. Adv. Opt. Photonics, 12, 1012-1236(2020).

    [2] M. Cattaneo, M. G. A. Paris, S. Olivares. Hybrid quantum key distribution using coherent states and photon-number-resolving detectors. Phys. Rev. A, 98, 012333(2018).

    [3] Y. Chi, L. Tian, B. Qi, L. Qian, H. Lo. High Speed Homodyne Detector for Gaussian-modulated Coherent-state Quantum Key Distribution(2009).

    [4] T. C. Ralph. Continuous variable quantum cryptography. Phys. Rev. A, 61, 010303(1999).

    [5] F. Grosshans, P. Grangier. Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett., 88, 057902(2002).

    [6] C. Weedbrook, A. M. Lance, W. P. Bowen, T. Symul, T. C. Ralph, P. K. Lam. Quantum cryptography without switching. Phys. Rev. Lett., 93, 170504(2004).

    [7] F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, P. Grangier. Quantum key distribution using Gaussian-modulated coherent states. Nature, 421, 238-241(2003).

    [8] J. Lodewyck, M. Bloch, R. García-Patrón, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, P. Grangier. Quantum key distribution over 25 km with an all-fiber continuous-variable system. Phys. Rev. A, 76, 042305(2007).

    [9] S. Fossier, E. Diamanti, T. Debuisschert, A. Villing, R. Tualle-Brouri, P. Grangier. Field test of a continuous-variable quantum key distribution prototype. New J. Phys., 11, 045023(2009).

    [10] P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, E. Diamanti. Experimental demonstration of long-distance continuous-variable quantum key distribution. Nat. Photonics, 7, 378-381(2013).

    [11] D. Huang, P. Huang, D. Lin, G. Zeng. Long-distance continuous-variable quantum key distribution by controlling excess noise. Sci. Rep., 6, 19201(2016).

    [12] Y. Zhang, Z. Chen, S. Pirandola, X. Wang, C. Zhou, B. Chu, Y. Zhao, B. Xu, S. Yu, H. Guo. Long-distance continuous-variable quantum key distribution over 202.81 km of fiber. Phys. Rev. Lett., 125, 010502(2020).

    [13] N. J. Cerf, M. Lévy, G. V. Assche. Quantum distribution of Gaussian keys using squeezed states. Phys. Rev. A, 63, 052311(2001).

    [14] R. García-Patrón, N. J. Cerf. Continuous-variable quantum key distribution protocols over noisy channels. Phys. Rev. Lett., 102, 130501(2009).

    [15] X. Su, W. Wang, Y. Wang, X. Jia, C. Xie, K. Peng. Continuous variable quantum key distribution based on optical entangled states without signal modulation. Europhys. Lett., 87, 20005(2009).

    [16] L. S. Madsen, V. C. Usenko, M. Lassen, R. Filip, U. L. Andersen. Continuous variable quantum key distribution with modulated entangled states. Nat. Commun., 3, 1083(2012).

    [17] V. C. Usenko, R. Filip. Squeezed-state quantum key distribution upon imperfect reconciliation. New J. Phys., 13, 113007(2011).

    [18] I. Derkach, V. Usenko, R. Filip. Squeezing-enhanced quantum key distribution over atmospheric channels. New J. Phys., 22, 053006(2020).

    [19] T. Gehring, V. Händchen, J. Duhme, F. Furrer, T. Franz, C. Pacher, R. Werner, R. Schnabel. Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks. Nat. Commun., 6, 8795(2015).

    [20] N. Walk, S. Hosseini, J. Geng, O. Thearle, J. Y. Haw, S. Armstrong, S. M. Assad, J. Janousek, T. C. Ralph, T. Symul, H. M. Wiseman, P. K. Lam. Experimental demonstration of Gaussian protocols for one-sided device-independent quantum key distribution. Optica, 3, 634-642(2016).

    [21] Z. Qu, I. B. Djordjevic. High-speed free-space optical continuous-variable quantum key distribution enabled by three-dimensional multiplexing. Opt. Express, 25, 7919-7928(2017).

    [22] H. Ishio, J. Minowa, K. Nosu. Review and status of wavelength-division-multiplexing technology and its application. J. Lightwave Technol., 2, 448-463(1984).

    [23] K. Grobe, M. Eiselt. Wavelength Division Multiplexing: A Practical Engineering Guide(2013).

    [24] Y. Wang, Y. Mao, W. Huang, D. Huang, Y. Guo. Optical frequency comb-based multichannel parallel continuous-variable quantum key distribution. Opt. Express, 27, 25314-25329(2019).

    [25] R. Kumar, X. Tang, A. Wonfor, R. Penty, I. White. Continuous variable quantum key distribution with multi-mode signals for noisy detectors. J. Opt. Soc. Am. B, 36, B109-B115(2019).

    [26] R. Filip, L. Mišta, P. Marek. Elimination of mode coupling in multimode continuous-variable key distribution. Phys. Rev. A, 71, 012323(2005).

    [27] V. C. Usenko, O. Kovalenko, R. Filip. Compensating the cross-talk in two-mode continuous-variable quantum communication. 41st International Conference on Telecommunications and Signal Processing (TSP), 1-4(2018).

    [28] Y. Cai, Y. Xiang, Y. Liu, Q. He, N. Treps. Versatile multipartite Einstein-Podolsky-Rosen steering via a quantum frequency comb. Phys. Rev. Res., 2, 032046(2020).

    [29] R. Medeiros de Araújo, J. Roslund, Y. Cai, G. Ferrini, C. Fabre, N. Treps. Full characterization of a highly multimode entangled state embedded in an optical frequency comb using pulse shaping. Phys. Rev. A, 89, 053828(2014).

    [30] G. de Valcarcel, G. Patera, N. Treps, C. Fabre. Multimode squeezing of frequency combs. Phys. Rev. A, 74, 061801(2006).

    [31] N. Liu, Y. Liu, J. Li, L. Yang, X. Li. Generation of multi-mode squeezed vacuum using pulse pumped fiber optical parametric amplifiers. Opt. Express, 24, 2125-2133(2016).

    [32] V. C. Usenko, R. Filip. Trusted noise in continuous-variable quantum key distribution: a threat and a defense. Entropy, 18, 20(2016).

    [33] Y. Cai, J. Roslund, G. Ferrini, F. Arzani, X. Xu, C. Fabre, N. Treps. Multimode entanglement in reconfigurable graph states using optical frequency combs. Nat. Commun., 8, 15645(2017).

    [34] V. C. Usenko, L. Ruppert, R. Filip. Quantum communication with macroscopically bright nonclassical states. Opt. Express, 23, 31534-31543(2015).

    [35] I. Derkach, V. C. Usenko, R. Filip. Preventing side-channel effects in continuous-variable quantum key distribution. Phys. Rev. A, 93, 032309(2016).

    [36] O. Kovalenko, V. C. Usenko, R. Filip. Feasibility of quantum key distribution with macroscopically bright coherent light. Opt. Express, 27, 36154-36163(2019).

    [37] V. C. Usenko, L. Ruppert, R. Filip. Entanglement-based continuous-variable quantum key distribution with multimode states and detectors. Phys. Rev. A, 90, 062326(2014).

    [38] V. C. Usenko, B. Heim, C. Peuntinger, C. Wittmann, C. Marquardt, G. Leuchs, R. Filip. Entanglement of Gaussian states and the applicability to quantum key distribution over fading channels. New J. Phys., 14, 093048(2012).

    [39] P. Jouguet, S. Kunz-Jacques, A. Leverrier. Long-distance continuous-variable quantum key distribution with a Gaussian modulation. Phys. Rev. A, 84, 062317(2011).

    [40] R. Garcia-Patron, N. J. Cerf. Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution. Phys. Rev. Lett., 97, 190503(2006).

    [41] M. M. Wolf, G. Giedke, J. I. Cirac. Extremality of Gaussian quantum states. Phys. Rev. Lett., 96, 080502(2006).

    [42] A. Leverrier, F. Grosshans, P. Grangier. Finite-size analysis of a continuous-variable quantum key distribution. Phys. Rev. A, 81, 062343(2010).

    [43] A. Leverrier, P. Grangier. Simple proof that Gaussian attacks are optimal among collective attacks against continuous-variable quantum key distribution with a Gaussian modulation. Phys. Rev. A, 81, 062314(2010).

    [44] R. Renner, J. I. Cirac. de Finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography. Phys. Rev. Lett., 102, 110504(2009).

    [45] A. Leverrier, R. García-Patrón, R. Renner, N. J. Cerf. Security of continuous-variable quantum key distribution against general attacks. Phys. Rev. Lett., 110, 030502(2013).

    [46] I. Devetak, A. Winter. Distillation of secret key and entanglement from quantum states. Proc. R. Soc. A, 461, 207-235(2005).

    [47] C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, S. Lloyd. Gaussian quantum information. Rev. Mod. Phys., 84, 621-669(2012).

    [48] C. S. Jacobsen, L. S. Madsen, V. C. Usenko, R. Filip, U. L. Andersen. Complete elimination of information leakage in continuous-variable quantum communication channels. npj Quantum Inf., 4, 32(2018).

    [49] V. Thiel, J. Roslund, P. Jian, C. Fabre, N. Treps. Quantum-limited measurements of distance fluctuations with a multimode detector. Quantum Sci. Technol., 2, 034008(2017).

    [50] F. Arzani, C. Fabre, N. Treps. Versatile engineering of multimode squeezed states by optimizing the pump spectral profile in spontaneous parametric down-conversion. Phys. Rev. A, 97, 033808(2018).

    [51] M. Lassen, A. Berni, L. S. Madsen, R. Filip, U. L. Andersen. Gaussian error correction of quantum states in a correlated noisy channel. Phys. Rev. Lett., 111, 180502(2013).

    [52] M. Genovese. Real applications of quantum imaging. J. Opt., 18, 073002(2016).

    [53] E. D. Lopaeva, I. R. Berchera, I. P. Degiovanni, S. Olivares, G. Brida, M. Genovese. Experimental realization of quantum illumination. Phys. Rev. Lett., 110, 153603(2013).

    [54] F. Grosshans. Collective attacks and unconditional security in continuous variable quantum key distribution. Phys. Rev. Lett., 94, 020504(2005).

    [55] M. G. Kendall, A. Stuart, J. K. Ord. Kendall’s Advanced Theory of Statistics(1987).

    [56] L. Ruppert, V. C. Usenko, R. Filip. Long-distance continuous-variable quantum key distribution with efficient channel estimation. Phys. Rev. A, 90, 062310(2014).

    [57] A. Leverrier. Composable security proof for continuous-variable quantum key distribution with coherent states. Phys. Rev. Lett., 114, 070501(2015).

    [58] M. Reck, A. Zeilinger, H. J. Bernstein, P. Bertani. Experimental realization of any discrete unitary operator. Phys. Rev. Lett., 73, 58-61(1994).

    [59] R. H. Byrd, P. Lu, J. Nocedal, C. Zhu. A limited-memory algorithm for bound constrained optimization. SIAM J. Sci. Comput., 16, 1190-1208(1994).

    [60] P. R. Bevington, D. K. Robinson. Data Reduction and Error Analysis for the Physical Sciences(2003).

    Olena Kovalenko, Young-Sik Ra, Yin Cai, Vladyslav C. Usenko, Claude Fabre, Nicolas Treps, Radim Filip. Frequency-multiplexed entanglement for continuous-variable quantum key distribution[J]. Photonics Research, 2021, 9(12): 2351
    Download Citation