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Quantum key distribution with continuous variables already uses advantageous high-speed single-mode homo-
dyne detection with low electronic noise at room temperature. Together with continuous-variable information
encoding to nonclassical states, the distance for secure key transmission through lossy channels can approach
300 km in current optical fibers. Such protocols tolerate higher channel noise and also limited data processing
efficiency compared to coherent-state protocols. The secret key rate can be further increased by increasing the
system clock rates, and, further, by a suitable frequency-mode-multiplexing of optical transmission channels.
However, the multiplexed modes couple together in the source or any other part of the protocol. Therefore,
multiplexed communication will experience cross talk and the gain can be minuscule. Advantageously, homodyne
detectors allow solving this cross-talk problem by proper data processing. It is a potential advantage over pro-
tocols with single-photon detectors, which do not enable similar data processing techniques. We demonstrate the
positive outcome of this methodology on the experimentally characterized frequency-multiplexed entangled
source of femtosecond optical pulses with natural cross talk between eight entangled pairs of modes. As the main
result, we predict the almost 15-fold higher secret key rate. This experimental test and analysis of frequency-
multiplexed entanglement source open the way for the field implementation of high-capacity quantum key
distribution with continuous variables. © 2021 Chinese Laser Press

https://doi.org/10.1364/PRJ.434979

1. INTRODUCTION

Quantum key distribution (QKD) [1] is a pioneering application
of quantum information theory enabled by fundamental particle
and wave quantum features of light. Advantageously, in experi-
ments at optical wavelengths, QKD can exploit complementary
photon counting and homodyne detection methods of quantum
optics. Naturally, both methods have advantages and disadvan-
tages, fundamental as well as technical. Therefore, optimal im-
plementation of a quantum-secure network will be likely hybrid
in the future, combining advantages and suppressing the weak-
nesses of different protocols respectively to the requirements and
conditions [2]. Currently, homodyne detection is fast, efficient,
with extremely low-noise, and tolerant to background noise in
the channel [3]. This hardware already opened space for a high-
speed secret key generation. For a long time, the homodyne de-
tection stimulated a large set of theoretical proposals [4–6] and
experimental protocols with coherent states of light [7–12].With

nonclassical squeezed and entangled states, the continuous-
variable (CV) protocols [13–15] become more robust and po-
tentially applicable at distances up to 300 km [16] in optical
fibers with attenuation 0.2 dB per kilometer, and tolerant to data
processing inefficiency [17]. Such protocols can be advanta-
geously implemented in both optical fiber links [16] and
free-space atmospheric channels with realistic turbulence [18].
Moreover, higher security can be offered by relaxing the
assumption about trusted devices for both coherent-state and
entanglement-based protocols, as it was demonstrated by imple-
mentation of one-sided device-independent protocols [19,20].

A rate of secret key can be increased in CV QKD by fre-
quency multiplexing of transmission channels [21]. Frequency
(wavelength) multiplexing is a well-known technique from
classical optical communications [22], also with the homodyne
detection [23]. It can be similarly considered to increase the
secret key rate of CV QKD protocols and has recently been
studied using Gaussian modulation of frequency comb states
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[24], as well as using independent lasers for each mode for sub-
sequent discrete [21] or Gaussian modulation [25]. In this pa-
per we test the entanglement-based CV QKD protocol that
uses multiple frequency modes to multiplex the signal.
However, in practice generated multiple entangled modes
can become mutually coupled to each other, resulting in cross
correlations as well as excess noise in the modes that can be
destructive for CV QKD. Importantly, homodyne detection
of field quadratures gives sufficient information about states
of light in the individual modes in order to compensate for
the cross talk. Based on these advantages, a cross-talk elimina-
tion based on state or data manipulations has been addressed in
Refs. [26,27] demonstrating that such a limiting factor for mul-
tiplexed QKD can be in principle deterministically eliminated
by optimized data manipulation, using the whole multimode
structure (contrary to modes selection, e.g., used to improve
quantum steering in Ref. [28]). Different to protocols with sin-
gle-photon detectors, it is therefore not required to implement
an active strategy of optical decoupling which is very challeng-
ing for a large number of transmitted modes.

Nowadays, CV QKD reaches a new level at which a sub-
stantial increase of secret key rate of mid-range protocols is
a relevant target of the ongoing development and requires,
in particular, development of cross-talk elimination methods.
The previously suggested methods either required heterodyne
detection with optimal engineering of auxiliary input states and
were not applied to CV QKD security analysis [26] or consid-
ered only cross-talk interaction between the neighboring modes
of the otherwise perfect entangled states [27]. In the current
paper we suggest the multimode cross-talk compensation
method based on data manipulation, equivalent to linear state
manipulations, experimentally test it on the real multiplexed
entangled states measured with the mode-discriminating ho-
modyne detection suitable for CV QKD, and evaluate security
of the resulting CV QKD protocol. Without such a test on the
multimode state with real cross talk and errors it is impossible
to estimate applicability of the cross-talk compensation for a
large number of modes. A positive result demonstrating that
secret key rate can be enhanced by channel multiplexing with
high efficiency, despite cross talk substantially reducing the
achievable key rate already in the source, is necessary to open
a pathway for further implementations and applications of fre-
quency-multiplexed CV QKD. For the test we use simultane-
ously frequency-multiplexed source of entanglement with eight
pairs of modes and mode-discriminating homodyne detection.
For them, the cross talk is a very natural phenomenon pro-
nouncedly reducing the key rate to a tiny number of 0.015 bits.
We suggest and apply optimized data manipulation, which al-
lows decoupling of modes under cross talk and brings large im-
provement to an achievable secret key rate. The secret key rate
can be enhanced by almost a factor of 15. Reducing the channel
noise in all frequency-multiplexed channels by this data
manipulation, alternatively, can extend the secure distance
(channel range at which generation of the secret key is still pos-
sible) by approximately 100 km. Moreover, as the source emits
femtosecond pulses, allowing for high system clock rates, the
performance of the system can be also further increased by time
multiplexing. Our result solves the major problem of mode

cross talk in the source; however, it can be equally applicable
to cross talk in the link and detection (although the mode cou-
pling inside an optical fiber is weak, if present at all, hence one
can expect the mode interaction in the source to be the domi-
nating cause of cross talk). Therefore, it opens the possibility for
high-speed and high-capacity entanglement-based CV QKD
with femtosecond frequency-multiplexed states.

2. RESULTS

We consider the use of an entanglement source in the multi-
mode CV QKD testbed based on the frequency-multiplexed
femtosecond pulses of light, consisting of 16 modes and with
mode-discriminating homodyne detection, as described in
Fig. 1. In our proof-of-principle experiment, all the 16 modes
are generated in a single beam, and to test the applicability of
the source for QKD purpose, we assume that the lower half of
the frequency modes are distributed to Alice, and the other half
are to Bob.

The experimental setup is shown in Fig. 2. The main laser is
a Ti-sapphire pulse laser, having a duration of 120 fs centered at
λ0 (�795 nm) with a repetition rate of 76 MHz. The beam
from the laser splits into two beams, where one is used for gen-
erating frequency-multiplexed entangled light, and the other
serves as a local oscillator (LO) for mode-discriminating homo-
dyne detection. To generate the entangled light, we employ a
synchronously pumped optical parametric oscillator (SPOPO)
including a 2 mm thick BiB3O6 (BiBO) crystal, which operates
below the threshold [29,30]. The pump laser for the SPOPO
(centered at λ0∕2) is prepared by second-harmonic generation

Fig. 1. Bright colors show a sketch of a CV QKD testbed for the
study of the multimode entangled source at the side of the sender,
Alice, with cross-talk coupling between the frequency modes in both
of the two beams, leaving the source. The entangled source is based on
eight pairs of modes, where only four of them are shown for clarity. We
consider a scenario where half of the modes (below the central fre-
quency) are locally measured by Alice and another half (above the cen-
tral frequency) transmitted to a remote trusted party Bob (trusted
devices are given in dashed blocks). Both multimode beams are de-
tected by homodyne detectors and processed to optimally eliminate
the cross talk and improve the secret key rate. The data processing
corresponds to a local physical multimode symplectic transformation
and was optimized to achieve higher key rate between the trusted par-
ties. The trusted parties then can use authenticated classical channel to
perform post-processing by correcting their errors and amplifying the
data privacy in order to obtain quantum-secure key as the result (this
part of the protocol was modeled numerically so is illustrated in pale
colors).
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of the main laser in a 0.2 mm thick BiBO crystal. As a result, an
entangled state of femtosecond pulses of light in multiple fre-
quency modes (centered at λ0) is generated in a single beam,
and the efficiency of the process is enhanced by the cavity con-
stituting the SPOPO. For our purpose, we consider 16 fre-
quency-band modes of the generated multimode light and
assume that the lower half (eight) frequency modes are measured
by the trusted sender Alice, while the other half frequency modes
are measured by the trusted receiver Bob after a multimode chan-
nel. We stress that even if in practice this separation is not per-
formed in the current experiment, spectrally splitting a beam in
two halves can be readily done experimentally with a simple dis-
persive element, such as a grating, a dichroic mirror, or a prism. It
is possible to use a high-efficiency grating or prism, or fiber-based
wavelength-division multiplexing [31]. These dispersive ele-
ments would introduce only small additional losses, leading
to the excess noise in the generated multimode states. Such noise
can be however considered trusted and will only have a limited
negative effect on the key distribution [32].

To measure the generated multimode state, we use homo-
dyne detection which can discriminate different frequency
modes. As the LO of homodyne detection determines the fre-
quency mode, we control the LO based on a pulse shaping
technique. For this purpose, a pulse shaper in the 4-f configu-
ration is employed: an input beam is diffracted by an optical
grating (1200 grooves/mm), which is subsequently focused by a
cylindrical lens (190 mm focal length). On the Fourier plane of
the lens, a reflection-type spatial light modulator having
512 × 512 pixels controls the amplitude and the phase of fre-
quency modes. The reflected beam comes back to the lens and
the grating. The overall wavelength resolution is found to be
0.1 nm. Using the pulse shaper, a covariance matrix associated
with the 16 frequency modes was obtained by measuring quad-
rature outcomes in a sequential way from the mode-discrimi-
nating homodyne detection; in the homodyne detection, the
two photodiodes have a quantum efficiency of 99%, fringe vis-
ibility is 93%–95%, and demodulation frequency is 1 MHz
[33]. The obtained covariance matrix is presented in
Appendix A.

Given the resolution of the pulse shaper, we consider that all
the measured modes are realistically matched to the local oscil-
lator. It also does not limit the applicability of the method
which can be applied to the cross talk in the multimode detec-
tor equally well. If the unmatched modes are present, they will
contribute to noise [34] and may act as a detection side channel
[35] but can be compensated for by increase of the brightness of
the local oscillator [36].

To extend and verify the method of decoupling following
the preliminary theoretical studies [26,27] for the source de-
picted in Fig. 1, we assume a typical QKD scenario, where
we suppose that Alice’s preparation is trusted (being fully
out of control by an eavesdropper Eve) and Alice is measuring
her modes locally by a multimode homodyne detector, while
the Bob’s modes travel directly toward his detection. Bob is
measuring his modes using mode-discriminating homodyne
detectors, also assumed to be trusted (including the efficiency
and the electronic noise of the detectors). The ability to address
the individual local modes in the homodyne detection is crucial
for channel multiplexing in CV QKD and the multimode
structure of entangled states can be harmful for the protocols
otherwise [37]. To controllably investigate the impact of lossy
channel, we applied attenuation to Bob’s measured results. It
emulates an untrusted channel, characterized by the transmit-
tance T , which is assumed to be fully controlled by an eaves-
dropper, Eve, capable of collective attacks. We assume a purely
lossy (attenuating) channel as the background noise is already
very small in real optical fiber channels. Such an approach al-
lows modeling fiber as well as free-space channels, where fluc-
tuations due to atmospheric turbulence are typically slow
compared to the signal repetition rate [38]. To comply with
the experimental testbed, where the multimode source was
characterized, we assume that the cross talk appears in the
source, but our methodology can also be directly applied also
to cross talk in the channel and detectors.

Security of CV QKD is evaluated as the positivity of the
lower bound on the key rate, which, in the case of collective
attacks and reverse reconciliation [5], reads

K � maxf0, βIAB − χBEg, (1)

where β ≤ 1 is the post-processing efficiency (further we real-
istically take β � 96%, which complies with the achieved post-
processing efficiency [39]), IAB is the mutual classical
(Shannon) information between Alice and Bob, and χBE is
the Holevo bound, which upper limits the information acces-
sible to a potential eavesdropper Eve on Bob’s measurement
results. We address security against collective attacks for the
Gaussian entanglement-based CV QKD [40,41], which can
be directly extended to the finite-size regime [42,43] and im-
plies security against general attacks [44,45]. The reverse rec-
onciliation is used to test secret key distribution for mid-range
distance with channel attenuation below −3 dB. The positivity
of the lower bound [Eq. (1)] implies that the trusted parties are
able to distill the secret key with at least the rate K by using
classical post-processing (error correction and privacy amplifi-
cation) [46]. We therefore analyze the security of frequency-
multiplexed CV QKD by evaluating the lower bound on
the key rate per multimode channel use K (further also referred
to as the key rate). We follow the Gaussian security proofs and

Fig. 2. Experimental setup for generation of frequency-multiplexed
multimode entangled light and its measurement with mode-discrimi-
nating homodyne detection. The generated multimode light ρ̂AB is in
16 frequency modes, where Alice (A) and Bob (B) access to the eight
lower frequency modes and the other eight frequency modes, respec-
tively. The pulse shaper is constructed in the folded configuration in
actual implementation. BS, beam splitter; SLM, spatial light modula-
tor; PD, photodiode. See main text for details.
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respective security analysis methods, as described in
Appendix A.

We demonstrate the power of the multimode states in CV
QKD by confirming the gradual increase of the overall key rate
for increasing the number of pairs of modes measured by Alice
and Bob, as shown in Fig. 3 (left), assuming channel transmit-
tance T � 0.2. We first rank the pairs by the key rate between
the individual pairs and then add pair by pair, thereby
obtaining larger key rate, as seen in Fig. 3 (left, circles and
the blue solid line).

For the multimode states as shown in Fig. 1, we optimize
the data processing to achieve the maximum key rate Eq. (1).
The applied data processing is equivalent to local passive sym-
plectic transformations when both the sender and the receiver
separately act on their respective modes by optimized beam
splitter networks [47]; see Appendix A for details. The results
of the optimization are given in Fig. 3 (squares and solid yellow
line) and it is evident that optimized local data manipulations
lead to an almost 15-fold increase of the overall key rate for the
multimode states. The optimization process can, therefore,
efficiently retrieve multiple pairs of entanglement from the
multimode entanglement resource, providing significant im-
provement for CV QKD. Moreover, the key rate becomes
much more robust against statistical error in the finite data en-
semble, as can be seen from the respective plots in Fig. 3
(squares and dashed yellow lines).

The improvement of multimode CV QKD by the local data
processing is concerned with the increase of the multimode

mutual information, as can be seen from Fig. 3 (right, top),
while Holevo bound is not affected, as seen from Fig. 3 (right,
bottom). Indeed, the local data processing (equivalent to sym-
plectic transformations) does not affect the quantum entropies
contributing to the Holevo bound by not changing the sym-
plectic spectrum (i.e., thermal-state decomposition) of the mul-
timode Gaussian state. On the other hand, redistribution of
modes occupation by the local symplectic transformations in-
creases the additive classical mutual information due to in-
creased correlations and can be optimized to achieve the
best performance. This also substantially simplifies the optimi-
zation of the method by reaching the maximum mutual infor-
mation, leading to the maximum key rate. Our method is
focused on maximizing mutual information (not on eliminat-
ing cross correlations) and leads to optimal improvement of the
key rate. Note that our method can be advantageously com-
bined with the protocol, in which the Holevo information,
maximally accessible to Eve, is minimized [48]. In this scenario
by proper multiplexing and elimination of cross talk a higher
key rate can be achieved at low post-processing efficiencies,
while not increasing the information leakage. This can be par-
ticularly promising for high-speed CV QKD, where fast but
less efficient error correction can be otherwise a very limiting
bottleneck [8,17].

3. DISCUSSION

We also analyze the robustness of CV QKD against channel
attenuation (which is equivalent to channel distance) with

Fig. 3. Left panel: estimated key rate (in terms of bits per multimode channel use) of CV QKD based on the frequency-multiplexed entangled
source in Fig. 1 for different number of pairs measured by Alice and Bob as obtained from the original data before decoupling (circles, blue lines) and
after decoupling of modes involved in the multimode cross talk by optimized data processing performed by the trusted parties after the homodyne
measurement (squares, yellow lines). The dotted, dotted–dashed, and dashed lines represent the pessimistic estimates that take into account standard
error for the respective number of measurements N � 5 × 103, N� 104, N � 4 × 104, as indicated over the lines in the plots (see Appendix A for
details). Note that blue non-solid lines are almost extinct on the plot. Shaded areas represent the method prediction bands with 95% confidence level
in the asymptotic limit of infinitely many measurement points. Realistic reconciliation efficiency β � 96% taken for the processed data, perfect
β � 1 taken for the original data. While multiplexing brings only small and fragile advantage when all the pairs are being used, it can be drastically
improved by optimized local data manipulations, revealing power of frequency multiplexing in CV QKD. The improvement gets more pronounced
as the number of data points N increases. Right panel: multimode mutual information (top) and Holevo bound (bottom) for different number of
pairs measured by Alice and Bob as obtained from the original data (circles, blue line) and after optimized linear interactions performed by the trusted
parties prior to the measurement (squares, yellow line). The plots illustrate the nature of improvement of frequency-multiplexed CV QKD by
optimized data manipulations, which is based on increase of the mutual information, while the Holevo bound remains unchanged and, therefore,
the yellow and blue points overlap.

2354 Vol. 9, No. 12 / December 2021 / Photonics Research Research Article



the full set of eight pairs of modes before and after the opti-
mized data manipulation as shown in Fig. 4 (the eight-pair
covariance matrix after optimized data processing is illustrated
in Fig. 5 in Appendix A). By eliminating the cross talk, we re-
duce the state preparation noise in the individual channels and
respectively increase the maximum tolerable channel noise. It is
evident from the plot that optimized local data manipulation
increases the maximum tolerable channel attenuation of the
protocol from approximately 8 dB to 28 dB of loss, thus dem-
onstrating potentially more than threefold increase of the secure
distance of the multimode CV QKD protocol (assuming
0.2 dB/km loss). We extrapolate the obtained results for the
cases of 25 and 50 modes, which are expected to further im-
prove the efficiency and robustness of the CV QKD protocol
up to approximately 34 and 36 dB; see Appendix A for details.
We also address the efficiency of our method by comparing the
achieved results to the bounds set by 8 times maximum per-
formance of one best pair of modes (as the total number of
pairs in our experiment is eight). In the way similar to maxi-
mization of the total key rate, we now run optimization to have
as much as possible key in this particular pair. In terms of mu-
tual information, the maximum in one pair is 0.28 bit per
channel use, the total maximum mutual information achieved
by our method is 0.517 bit per channel use, and the bound (8
times the maximum value for one pair) is 2.24 bit per channel
use, which is 4.3 times larger than we achieve. For the key rate
the maximum for one pair is 0.163 bit per channel use, the total
achieved key rate is 0.212 bit per channel use, and the bound is
1.304 bit per channel use, which is 6.15 time larger than we
achieve. We define the decoupling efficiency as the ratio be-
tween the secret key rate achieved and the secret key rate that
could be achieved in a perfect setting with all eight pairs having
maximal mutual Shannon information. The efficiency of our
method for the secret key rate therefore reaches 0.16. This
removable limitation is caused by source imperfections beyond

the linear cross talk and would require development of
additional advanced experimental and data processing methods
to further improve practical frequency-multiplexed CV QKD.
Our results show that despite drastic improvement achieved
with the suggested method for cross-talk elimination, even
higher performance can be achieved by larger number of fre-
quency channels with faster data processing and by further de-
veloped experimental techniques aimed at reduction of
cross talk.

4. SUMMARY AND OUTLOOK

By optimally applying data manipulations we were able to com-
pensate the cross talk in the frequency-multiplexed CV QKD
with femtosecond-pulsed entangled states and substantially
increase the mutual information between the sets of modes,
measured by the trusted parties, while the leaked informa-
tion, upper bounded by a function of Gaussian quantum en-
tropies, did not change. Thus, we can increase the achievable
key rate for continuous-variable quantum key distribution or,
equivalently, extend the secure distance of the protocols. The
results of the optimized local data manipulations show the
possibility to increase the overall key rate by almost the factor
of 15 and extend the secure distance for the multiplexed
entanglement-based protocol by the factor of 3. Note that
while higher key rates can be as well obtained by increasing
the system repetition rate, our method does not affect the in-
formation leakage and only increases the mutual information,
hence drastically increasing the key. Nevertheless, our method
can be further combined with the increase of the repetition rate
to achieve even higher key rates. In the present demonstration,
the calculations were performed on a covariance matrix ob-
tained by mode-discriminating homodyne measurement and
can be easily extended to a large number of modes [49].
Furthermore, the cross talk between the modes can also be fur-
ther reduced or adapted to the measurement system manipu-
lating the source through spectral shaping of the pump [50].
While we applied data manipulations to compensate cross talk
in the multimode CV QKD source, the method can be also
used to eliminate cross talk that appears in the multimode
quantum channel. Our method is therefore very promising
for improving key rates of continuous-variable quantum key
distribution and can also be combined with the protocol
based on minimization of the information leakage [48], espe-
cially with elimination of channel noise and efficient channel
estimation techniques, in order to overcome the limitations
imposed by realistic fast post-processing. Moreover, we can
combine our method with the existing tools to eliminate cor-
related noise [51] and side channels [35]. We therefore open
the pathway to very high-speed practical realization of quan-
tum key distribution using continuous variables. It should be
followed by a test of complete multiplexed protocol together
with secret key generation and can be extended to network-
ing entanglement-based communication settings. Furthermore,
the suggested cross-talk compensation technique can be
useful in other applications of continuous-variable quantum
information, such as quantum imaging [52] or quantum
illumination [53].

Fig. 4. Key rate of CV QKD versus channel transmittance T (in
dB) as obtained from the original data on the full multimode entangled
state (blue solid line), after optimized local data manipulations per-
formed by the trusted parties for different number of used pairs of
modes (non-solid lines for reduced number of pairs and thick solid
violet line for the maximum number of eight pairs), linear extrapola-
tion for larger number of modes (blue and brown dashed lines).
Post-processing efficiency β � 96%. Evidently, optimized data
manipulation can drastically improve robustness to loss (and, respec-
tively, the secure distance) of frequency-multiplexed CV QKD with
entangled states.
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APPENDIX A

1. Security Analysis
The key rate is calculated as K � maxf0, βI pAB − χBEg, where
I pAB is the classical information between Alice and Bob in
p̂ � i�â† − â� quadrature (we chose it because in this experi-
ment it gives larger key than the x̂ � â† � â quadrature).

The classical mutual information for a pair of Gaussian-
distributed datasets A and B with variances V A and V B , respec-
tively, can be evaluated as IAB � log2�V A∕V AjB�, where
V AjB � V A − C2

AB∕V B is the conditional variance, which
can be expressed through the correlations between the datasets,
CAB . It is therefore straightforward to evaluate our multimode
mutual information IAB � P

8
i�1 IAiBi

, which is the sum of bi-
partite mutual information quantities between eight pairs of
datasets obtained from the homodyne measurements of differ-
ent frequency modes on both Alice’s and Bob’s sides. Note that
here and further the mutual information as well as the lower
bound on the key rate Eq. (1) is evaluated in bit per multimode
channel use.

The calculation of the Holevo bound is more involved and is
performed in the assumption that Eve is capable of collective
measurement of the eight-mode state, reflected from the
attenuating channel, similar to the single-mode CV QKD in
purely lossy channels [54], as Eve’s vacuum modes, correspond-
ing to the loss in each of the modes, cannot be correlated.
The Holevo bound is then evaluated as the difference
S�E� − S�E jB� between the von Neumann (quantum) entro-
pies of the state available to Eve prior and after conditioning
on the measurements of the receiving trusted party Bob.
The von Neumann entropy of a state described by covariance
matrix γ is calculated as S�E� � P

i G
λi−1
2
, where λi are sym-

plectic eigenvalues of γE and G�x� � �x � 1�log2�x � 1�−
x log2 x. Here S�E� is the entropy of the eight-mode state
measured by Eve, and S�E jB� is the entropy of Eve’s state, con-
ditioned on the set of fxBi

g, being the measurement outcomes
of the homodyne detection in x-quadrature on eight modes at
Bob’s station (equivalently for the p-quadrature measurements).
The calculation is performed in the covariance matrix formal-
ism, within the pessimistic Gaussian state approximation (see
more details on the Gaussian security analysis in Ref. [32]).

2. Error Estimation
To estimate the effects of the measurement error on the key
rate, we assume that every pair of modes has bi-variate normal
quadrature distributions and the covariance matrix for the
i, j-pair is

γij �
�
V i Cij
Cij V j

�
: (A1)

Here V i �
� hΔx2i i 0

0 hΔp2i i
�

and Cij �� hxixji 0
0 hpipji

�
, as in this experiment no correlations be-

tween quadratures were observed, hence hxipji � 0∀i, j. The
best estimate for the standard error for γi,j after N measure-
ments will be [55]

σγi,j �
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

N � 1
p

0
B@

ffiffiffi
2

p
V i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V iV j � C2

ij

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V iV j � C2

ij

q ffiffiffi
2

p
V j

1
CA: (A2)

We assume the worst case (pessimistic scenario) for different
numbers of measurements and evaluate the lower bound on
the secret key rate for each case. The pessimistic scenario im-
plies that the diagonal elements of the covariance matrix (var-
iances) are increased by the error value while the absolute values
of the off-diagonal elements (correlations) are decreased
[56,57]. The results are presented in Fig. 2 as dashed lines.
It is evident from the plots in Fig. 2, that even multiplexing
of all eight pairs can only slightly restore the nonzero key rate
if the measurement results are used without any processing, and
that the key rate is very sensitive to the error in the finite data
samples. One can expect that the performance of the multi-
plexed CV QKD is strongly limited by the cross talk between
the modes [27], which is likely to appear in the generation of
frequency-multiplexed entangled states under study. We there-
fore suggest and verify the method of optimized data manipu-
lation after the homodyne detection, performed by the trusted
sides, in order to substantially compensate the cross talk
and make the multimode resource more applicable for
CV QKD.

3. Optimized Data Processing
Generally, all the 16 modes are getting coupled in the state
preparation and such cross talk should be possible to at least
partially compensate for using a global 16 × 16 symplectic
transformation that maximizes the mutual information. The
quantum communication scenario makes such global transfor-
mation impossible, but the cross talk can be significantly re-
duced even when we consider Alice and Bob performing
only local operations independently of each other. Alice and
Bob each control eight modes of the shared 16-mode state.
Each of them can then introduce linear local passive operations
on their respective sides in order to minimize the
cross talk while preserving the security of the protocol. We
are therefore looking for two 8 × 8 local symplectic transforma-
tion matrices equivalent to a sequence of linear optical
devices.

The covariance matrix of the whole 16-mode state γ can be
represented as

γ �

0
B@

V 1 � � � C1,16

..

. ..
.

C16,1 � � � V 16

1
CA, (A3)

with V i and Ci,j given in Eq. (A1) and below. To model the
interaction, we assume that a set of 2 × 2 beam splitters is in-
troduced between all possible pairwise mode permutations on
the same side, i.e., there are �N∕2 − 1�N∕2 � 56 beam split-
ters [58] (28 on Bob’s and 28 on Alice’s side). The phase con-
vention we use for a 2 × 2 beam splitter acting on a 16-mode
state is
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T ij �

0
BBBBBBBB@

II � � � 0 0 � � � 0
..
. ..

. ..
. ..

.

0 � � � ffiffiffiffitijp
II

ffiffiffiffiffiffiffiffiffiffiffi
1 − t ij

p
II � � � 0

0 � � � ffiffiffiffiffiffiffiffiffiffiffi
1 − tij

p
II −

ffiffiffiffitijp
II � � � 0

..

. ..
. ..

. ..
.

0 � � � 0 0 � � � II

1
CCCCCCCCA
, (A4)

where t ij is the transmittance coefficient, and i, j are the modes
that are interacting on the given beam splitter. Then introduc-
ing the beam-splitter network on the sender side is equivalent
to Alice acting on the covariance matrix with the sequence of
the beam splitter two-mode linear coupling operation: first
Alice acts with γ 0 � T 1,2γTT

1,2, and then γ 0 0 � T 1,3γ
0TT

1,3,
etc. As a result, the sender (Alice) transforms the initial state
with the product of 28 operators,

UA � T 7,8T 6,8…T 1,3T 1,2 �
Y8

i�1, j�i�1

T i,j, (A5)

on her side and the receiver (Bob) acts in the same manner with
the operation

UB � T 15,16T 14,16…T 8,10T 8,9 �
Y16

i�9, j�i�1

T i,j (A6)

on his side. Their joint interaction operation is U � UAUB .
After the beam-splitter network is applied to the original state,
the covariance matrix becomes γf � U γUT .

We then calculate the mutual information I xAB and IpAB of
the state γf separately in x̂ and p̂ quadratures and maximize
the functions I xAB �t� and IpAB �t� numerically. Here t �
�t1,2, t2,3,…, t15,16� is the variable vector made of transmit-
tance coefficients of the beam splitters. There is no need to
maximize the key rate, as the Holevo bound is not affected
by unitary transformations (indeed, the von Neumann entropy
of the states is preserved, hence the maximization of the mutual
information is sufficient). The optimization was done numeri-
cally using the limited memory Broyden–Fletcher–Goldfarb–
Shannon (l-BGFS) optimization algorithm with bound
constraints [59] from SciPy library. The l-BGFS performs O�d�
computations per iteration, where d is the number of the func-
tion’s variables, in this case d � �N∕2 − 1�N∕2, and the
method performance scales depending on the number of the
modes as O�N 2�. In general, l-BGFS does not converge to a
global maximum if the function under maximization is not a
convex one as is the case here. To find the global maximum
we used the basin-hopping optimizationmethod. Naturally there
is no guarantee that each maximum we have found is indeed a
global one, but the obtained results have already shown drastic
improvement of quantum communication using the multimode
states. The visualization of the covariance matrices before and
after the optimization is given in Fig. 5, where the raw data used
in the optimization are reported in Ref. [33]. It shows noticeable
redistribution of correlations between the modes.

It is worth mentioning that while here we optimize the state
with only passive local operations, it is also possible to use an
active transformation, although it would significantly increase
the computing power needed. In addition, the most general set

of passive local operations would be represented by sequence of
Mach–Zehnder interferometers with beam splitters of opti-
mized transmittance and optimized phase shifts between them.
We have checked this kind of optimization setup as well, but it
did not help to increase the Shannon information and the secret
key rate. This is due to the fact that the correlations between x̂
and p̂ quadratures in the data are negligibly small.

The matrix of the optimized interaction is to be found on
the parameter estimation step of the QKD protocol based on
the estimation of the state, shared between the trusted parties,
in terms of its covariance matrix [57]. The optimization can be
performed on either the sender or the receiver side and then
announced publicly. Since the optimization parameters are
not related to the raw key data, no further disclosure and dis-
carding of the key bits is needed. Eavesdropper’s knowledge of
the optimized interaction does not influence the security of the
protocol as the security proof already assumes eavesdropper’s
ability to perform an optimal collective measurement on the
intercepted signal [54] and the Holevo bound is not affected
by the linear interactions between the signal modes on the
trusted sides.

4. Results Extrapolation
We predict the efficiency of our method for larger numbers of
pairs, by evaluating prediction bands, as seen in Fig. 3 (left). To
do so, we first used a linear fit for the key rate results in order to
predict how the key rate will behave if we add more modes. If
the pairs of modes were uncorrelated (i.e., experience no cross
talk) and all had the same variance, the key would grow linearly;
therefore, we assume that in our case of correlated modes
dependence will stay close to linear. Using the method of
the least squares [60] we got a linear model for the key rate
in the form K �x� � a� bx (for the processed data we have
a � −0.0501 and b � 0.0293). We then evaluated the predic-
tion bands defined as K �x� � t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � XCovX T

p
, where Cov is

the covariance matrix for the coefficients a and b, and s2 is the

Fig. 5. Visualization of covariance matrices in x̂ quadrature (left)
and p̂ quadrature (right) before (top) and after (bottom) the optimized
linear data processing.
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mean squared error for the data points, X �
�
1
x

�
, t is defined

from the Students distribution for 95% confidence level (result-
ing in t � 2.447).
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