• Chinese Optics Letters
  • Vol. 20, Issue 1, 011203 (2022)
Guanfang Wang1, Zhu Li1、*, Jialing Huang2, Huizong Duan1, Xiangqing Huang1, Hongfan Liu1, Qi Liu1, Shanqing Yang1, Liangcheng Tu1, and Hsien-Chi Yeh1
Author Affiliations
  • 1MOE Key Laboratory of TianQin Mission, TianQin Research Center for Gravitational Physics & School of Physics and Astronomy, Frontiers Science Center for TianQin, CNSA Research Center for Gravitational Waves, Sun Yat-sen University (Zhuhai Campus), Zhuhai 519082, China
  • 2Shenhe Middle School, Heyuan 517000, China
  • show less
    DOI: 10.3788/COL202220.011203 Cite this Article Set citation alerts
    Guanfang Wang, Zhu Li, Jialing Huang, Huizong Duan, Xiangqing Huang, Hongfan Liu, Qi Liu, Shanqing Yang, Liangcheng Tu, Hsien-Chi Yeh. Analysis and suppression of thermal effect of an ultra-stable laser interferometer for space-based gravitational waves detection[J]. Chinese Optics Letters, 2022, 20(1): 011203 Copy Citation Text show less
    References

    [1] M. Bailes, B. K. Berger, P. R. Brady, M. Branchesi, K. Danzmann, M. Evans, K. Holley-Bockelmann, B. R. Iyer, T. Kajita, S. Katsanevas, M. Kramer, A. Lazzarini, L. Lehner, G. Losurdo, H. Lück, D. E. McClelland, M. A. McLaughlin, M. Punturo, S. Ransom, S. Raychaudhury, D. H. Reitze, F. Ricci, S. Rowan, Y. Saito, G. H. Sanders, B. S. Sathyaprakash, B. F. Schutz, A. Sesana, H. Shinkai, D. H. Shoemaker, J. Thorpe, J. F. J. van den Brand, S. Vitale. Gravitational-wave physics and astronomy in the 2020s and 2030s. Nat. Rev. Phys., 3, 344(2021).

    [2] H. Bondi, M. Burg, A. Metzner. Gravitational waves in general relativity. Nature, 186, 535(1960).

    [3] J. Miller, L. Barsotti, S. Vitale, P. Fritschel, M. Evans, D. Sigg. Prospects for doubling the range of advanced LIGO. Phys. Rev. D, 90, 062005(2015).

    [4] V. Connaughton, E. Burns, A. Goldstein, L. Blackburn, M. S. Briggs, B.-B. Zhang, J. Camp, N. Christensen, C. M. Hui, P. Jenke, T. Littenberg, J. E. McEnery, J. Racusin, P. Shawhan, L. Singer, J. Veitch, C. A. Wilson-Hodge, P. N. Bhat, E. Bissaldi, W. Cleveland, G. Fitzpatrick, M. M. Giles, M. H. Gibby, A. von Kienlin, R. M. Kippen, S. McBreen, B. Mailyan, C. A. Meegan, W. S. Paciesas, R. D. Preece, O. J. Roberts, L. Sparke, M. Stanbro, K. Toelge, P. Veres. Fermi GBM observations of LIGO gravitational wave event GW150914. Astrophys. J. Lett., 6, 826(2016).

    [5] B. C. Barish. The laser interferometer gravitational-wave observatory LIGO. Adv. Space Res., 25, 1165(2000).

    [6] R. E. Spero, S. E. Withcomb. The laser interferometer gravitational-wave observatory (LIGO). Opt. Photon. News, 6, 35(1995).

    [7] K. Danzmann. LISA-Laser Interferometer Space Antenna for gravitational wave measurements. Class. Quantum Grav., 13, A247(2000).

    [8] S. Babak, J. Gair, A. Sesana, E. Barausse, C. F. Sopuerta, C. P. L. Berry, E. Berti, P. Amaro-Seoane, A. Petiteau, A. Klein. Science with the space-based interferometer LISA. V. Extreme mass-ratio inspirals. Phys. Rev. D, 95, 103012(2017).

    [9] P. Auclair, J. J. Blanco-Pillado, D. G. Figueroa, A. C. Jenkins, M. Lewicki, M. Sakellariadou, S. Sanidas, L. Sousa, D. A. Steer, J. M. Wachter, S. Kuroyanagi. Probing the gravitational wave background from cosmic strings with LISA. J. Cosmol. Astropart. Phys., 4, 034(2020).

    [10] M. Lau, I. Mandel, A. Vigna-Gómez, C. J. Neijssel, S. Stevenson, A. Sesana. Detecting double neutron stars with LISA. Mon. Not. R. Astron. Soc., 3, 492(2020).

    [11] T. J. Sumner, D. Shaul. The observation of gravitational waves from space using LISA. Mod. Phys. Lett. A, 19, 785(2008).

    [12] J. Luo, L. S. Chen, H. Z. Duan, Y. G. Gong, S. C. Hu, J. H. Ji, Q. Liu, J. W. Mei, V. Milyukov, M. Sazhin, C. G. Shao, V. T. Toth, H. B. Tu, Y. M. Wang, Y. Wang, H. C. Yeh, M. S. Zhan, Y. H. Zhang, V. Zharov, Z. B. Zhou. TianQin: a space-borne gravitational wave detector. Class. Quant. Grav., 33, 035010(2015).

    [13] C. X. Hu, X. H. Li, Y. Wang, W. F. Feng, M. Y. Zhou, Y. M. Hu, S. C. Hu, J. W. Mei, C. G. Shao. Fundamentals of the orbit and response for TianQin. Class. Quant. Grav., 35, 095008(2018).

    [14] S. L. Huang, X. F. Gong, X. U. Peng, A. S. Pau, X. Bian, Y. W. Chen, X. Chen, Z. Fang, X. F. Feng, F. K. Liu, S. Li, X. Li, Z. R. Luo, M. X. Shao, S. Rainer, W. L. Tang, Y. Wang, Y. Wang, Y. L. Zang, Y. K. Lau. Gravitational wave detection in space--a new window in astronomy. Scientia Sinica, 47, 010404(2017).

    [15] W. R. Hu, Y. L. Wu. The Taiji Program in space for gravitational wave physics and the nature of gravity. Natl. Sci. Rev., 4, 685(2017).

    [16] B. Caron, S. Bellucci, F. L. Diberder, A. Dominjon, C. Drezen, R. Flaminio, X. Grave, F. Marion, L. Massonnet, C. Mehmel, R. Morand, B. Mours, M. Yvert, D. Babusci, S. Bellucci, G. Candusso, G. Giordano, G. Matone, L. Dognin, J. M. Mackowski, M. Napolitano, L. Pinard, F. Barone, E. Calloni, L. Di Fiore, A. Grado, L. Milano, G. Russo, S. Solimeno, M. Barsuglia, V. Brisson, F. Cavalier, M. Davier, P. Hello, F. Le Diberder, P. Marin, M. Taubman, F. Bondu, A. Brillet, F. Cleva, H. Heitmann, L. Lattrach, C. N. Man, M. Pham-Tu, J. Y. Vinet, C. Boccara, Ph. Gleyes, V. Loreitte, J. P. Roger, G. Cagnoli, L. Gammaitoni, J. Kovalik, F. Marchesoni, M. Punturo, M. Bernardini, S. Braccini, C. Bradaschia, R. del Fabbro, R. de Salvo, A. Di Virgilio, I. Ferante, F. Fidecaro, A. Gennai, A. Giassi, A. Giazotto, L. E. Holloway, P. La Penna, G. Lorsurdo, F. Palla, H. B. Pan, A. Pasqualetti, R. Pasuello, R. Poggiani, G. Torelli, Z. Zhou, E. Majorana, P. Puppo, P. Rapagnani, F. Ricci. Virgo: a laser interferometer for the detection of gravitational waves. J. Instrum., 7, P03012(2012).

    [17] Y. Li, Z. Luo, H. Liu, R. H. Gao, G. Jin. Laser interferometer for space gravitational waves detection and earth gravity mapping. Microgravity Sci. Technol., 30, 817(2018).

    [18] F. Hechler, W. M. Folkner. Mission analysis for the Laser Interferometer Space Antenna (LISA) mission. Adv. Space. Res., 32, 1277(2003).

    [19] J. W. Mei, Y. Z. Bai, J. H. Bao, E. Barausse, L. Cai, E. Canuto, B. Cao, W. M. Chen, Y. Chen, Y. W. Ding, H. Z. Duan, H. M. Fan, W. F. Feng, H. L. Fu, Q. Gao, T. Q. Gao, Y. G. Gong, X. Y. Gou, C. Z. Gu, D. F. Gu, Z. Q. He, M. Hendry, W. Hong, X. C. Hu, Y. M. Hu, Y. X. Hu, S. J. Huang, X. Q. Huang, Q. H. Jiang, Y. Z. Jiang, Y. Jiang, Z. Jiang, H. M. Jin, V. Korol, H. Y. Li, M. Li, M. Li, P. C. Li, R. W. Li, Y. Q. Li, Z. Li, Z. L. Li, Z. X. Li, Y. R. Liang, Z. C. Liang, F. J. Liao, S. Liu, Y. C. Liu, L. Liu, P. B. Liu, X. H. Liu, Y. Liu, X. F. Lu, Y. Lu, Z. H. Lu, Y. Luo, Z. C. Luo, V. Milyukov, M. Ming, X. Y. Pi, C. G. Qin, S. B. Qu, A. Sesana, C. G. Shao, C. F. Shi, W. Su, D. Y. Tan, Y. J. Tan, Z. B. Tan, L. C. Tu, B. Wang, C. R. Wang, F. B. Wang, G. F. Wang, H. T. Wang, J. Wang, L. J. Wang, P. P. Wang, X. D. Wang, Y. Wang, Y. F. Wang, R. Wei, S. C. Wu, C. Y. Xiao, X. S. Xu, C. Xue, F. C. Yang, L. Yang, M. L. Yang, S. Q. Yang, B. B. Ye, H. C. Yeh, S. H. Yu, D. S. Zhai, C. S. Zhang, H. T. Zhang, J. D. Zhang, J. Zhang, L. H. Zhang, X. Zhang, X. F. Zhang, H. Zhou, M. Y. Zhou, Z. B. Zhou, D. D. Zhu, T. G. Zi, J. Luo. The TianQin project: current progress on science and technology. Prog. Theor. Exp. Phys., 5, A107(2020).

    [20] Z. Luo, Y. Wang, Y. Wu, W. R. Hu, G. Jin. The Taiji program: a concise overview. Prog. Theor. Exp. Phys., 5, A108(2020).

    [21] R. Lawrence, M. Zucker, P. Fritschel, P. Marfuta, D. Shoemaker. Adaptive thermal compensation of test masses in advanced LIGO. Class. Quant. Grav., 19, 1803(2001).

    [22] P. Li, J. Liu, P. Huang, X. Y. Zhang, J. H. Shi, L. B. Yuan, C. Y. Guan. Tunable fiber-tip lens based on thermo-optic effect of amorphous silicon. Chin. Opt. Lett., 18, 030602(2020).

    [23] J. Luo, Y. Z. Bai, L. Cai, B. Cao, W. M. Chen, Y. Chen, D. C. Cheng, Y. W. Ding, H. Z. Duan, X. Y. Gou, C. Z. Gu, D. F. Gu, Z. Q. He, S. Hu, Y. X. Hu, X. Q. Huang, Q. H. Jiang, Y. Z. Jiang, H. G. Li, H. Y. Li, J. Li, M. Li, Z. Li, Z. X. Li, Y. R. Liang, F. J. Liao, Y. C. Liu, L. Liu, P. B. Liu, X. H. Liu, Y. Liu, X. F. Lu, Y. Luo, J. W. Mei, M. Ming, S. B. Qu, D. Y. Tan, M. Tang, L. C. Tu, C. R. Wang, F. B. Wang, G. F. Wang, J. Wang, L. J. Wang, X. D. Wang, R. Wei, S. C. Wu, C. Y. Xiao, M. Z. Xie, X. S. Xu, L. Yang, M. L. Yang, S. Q. Yang, H. C. Yeh, J. B. Yu, L. H. Zhang, M. H. Zhao, Z. B. Zhou. The first round result from the TianQin-1 satellite. Class. Quant. Grav., 37, 185013(2020).

    [24] Z. Li, H. Z. Duan, X. Q. Huang, M. Ming, P. B. Liu, S. Zou, G. F. Wang, X. Zhang, M. L. Yang, B. Cao, Q. Liu, S. Q. Yang, L. C. Tu, H. C. Yeh. Design and performance test of the spaceborne laser in the TianQin-1 mission. Opt. Laser Technol., 141, 107155(2021).

    [25] A. Steimacher, A. N. Medina, A. C. Bento, J. H. Rohling, M. L. Baesso, V. C. S. Reynoso, S. M. Lima, M. N. Petrovich, D. W. Hewak. The temperature coefficient of the optical path length as a function of the temperature in different optical glasses. J. Non-Cryst. Solids, 348, 240(2004).

    [26] A. P. Silva, A. P. Carmo, V. Anjos, M. J. V. Bell, L. R. P. Kassab, R. D. A. Pinto. Temperature coefficient of optical path of tellurite glasses doped with gold nanoparticles. Opt. Mater., 34, 239(2012).

    [27] M. L. Baesso, J. Shen, R. D. Snook. Mode-mismatched thermal lens determination of temperature coefficient of optical path length in soda lime glass at different wavelengths. J. Appl. Phys., 75, 3732(1994).

    [28] B. Xie, S. Feng. Heterodyne detection enhanced by quantum correlation. Chin. Opt. Lett., 19, 072701(2021).

    [29] X. Chen, C. Zhou, D. Fan, L. Qian, Y. D. Pang, C. Wei, G. Zhao, S. J. Liang, Y. X. Li. Modified frequency-shifted interferometer: encoding wavelength into phase. Chin. Opt. Lett., 18, 101203(2020).

    [30] X. F. Wang, L. Feng, P. Chen, Z. Huang, Y. Yuan. Micro displacement reconstruction of self-mixing grating interferometer based on Littrow structure. Chin. Opt. Lett., 19, 101402(2021).

    [31] M. Armano, H. Audley, J. Baird, P. Binetruy, P. Zweifel. Sensor noise in LISA pathfinder: in-flight performance of the optical test mass readout. Phys. Rev. Lett., 126, 131103(2021).

    [32] M. Armano, H. Audley, J. Baird, P. Binetruy, M. Born, D. Bortoluzzi, E. Castelli, A. Cavalleri, A. Cesarini, A. M. Cruise, K. Danzmann, M. de Deus Silva, I. Diepholz, G. Dixon, R. Dolesi, L. Ferraioli, V. Ferroni, E. D. Fitzsimons, M. Freschi, L. Gesa, F. Gibert, D. Giardini, R. Giusteri, C. Grimani, J. Grzymisch, I. Harrison, G. Heinzel, M. Hewitson, D. Hollington, D. Hoyland, M. Hueller, H. Inchauspé, O. Jennrich, P. Jetzer, N. Karnesis, B. Kaune, N. Korsakova, C. J. Killow, J. A. Lobo, I. Lloro, L. Liu, J. P. López-Zaragoza, R. Maarschalkerweerd, D. Mance, N. Meshskar, V. Martín, L. Martin-Polo, J. Martino, F. Martin-Porqueras, I. Mateos, P. W. McNamara, J. Mendes, L. Mendes, M. Nofrarias, S. Paczkowski, M. Perreur-Lloyd, A. Petiteau, P. Pivato, E. Plagnol, J. Ramos-Castro, J. Reiche, D. I. Robertson, F. Rivas, G. Russano, J. Slutsky, C. F. Sopuerta, T. Sumner, D. Texier, J. I. Thorpe, D. Vetrugno, S. Vitale, G. Wanner, H. Ward, P. Wass, W. J. Weber, L. Wissel, A. Wittchen, P. Zweife. LISA pathfinder performance confirmed in an open-loop configuration: results from the free-fall actuation mode. Phys. Rev. Lett., 123, 111101(2019).

    CLP Journals

    [1] Qiongqiong Zhang, Chengkai Pang, Yurong Wang, Guangyue Shen, Lei Yang, Zhaohui Li, Haiyan Huang, Guang Wu. Portable system integrated with time comparison, ranging, and communication[J]. Chinese Optics Letters, 2022, 20(10): 100601

    Data from CrossRef

    [1] He Dong, Wei Zhang, Minxuan Li, Zhibo Zeng, Di Cao, Xiaoping Li. High-precision air temperature control considering both hardware elements and controller design. Case Studies in Thermal Engineering, 102290(2022).

    Guanfang Wang, Zhu Li, Jialing Huang, Huizong Duan, Xiangqing Huang, Hongfan Liu, Qi Liu, Shanqing Yang, Liangcheng Tu, Hsien-Chi Yeh. Analysis and suppression of thermal effect of an ultra-stable laser interferometer for space-based gravitational waves detection[J]. Chinese Optics Letters, 2022, 20(1): 011203
    Download Citation