• Chinese Optics Letters
  • Vol. 20, Issue 1, 011203 (2022)
Guanfang Wang1, Zhu Li1、*, Jialing Huang2, Huizong Duan1, Xiangqing Huang1, Hongfan Liu1, Qi Liu1, Shanqing Yang1, Liangcheng Tu1, and Hsien-Chi Yeh1
Author Affiliations
  • 1MOE Key Laboratory of TianQin Mission, TianQin Research Center for Gravitational Physics & School of Physics and Astronomy, Frontiers Science Center for TianQin, CNSA Research Center for Gravitational Waves, Sun Yat-sen University (Zhuhai Campus), Zhuhai 519082, China
  • 2Shenhe Middle School, Heyuan 517000, China
  • show less
    DOI: 10.3788/COL202220.011203 Cite this Article Set citation alerts
    Guanfang Wang, Zhu Li, Jialing Huang, Huizong Duan, Xiangqing Huang, Hongfan Liu, Qi Liu, Shanqing Yang, Liangcheng Tu, Hsien-Chi Yeh. Analysis and suppression of thermal effect of an ultra-stable laser interferometer for space-based gravitational waves detection[J]. Chinese Optics Letters, 2022, 20(1): 011203 Copy Citation Text show less

    Abstract

    In this paper, we present a suppression method for the thermal drift of an ultra-stable laser interferometer. The detailed analysis on the Michelson interferometer indicates that the change in optical path length induced by temperature variation can be effectively reduced by choosing proper thickness and/or incident angle of a compensator. Taking the optical bench of the Laser Interferometer Space Antenna Pathfinder as an example, we analyze the optical bench model with a compensator and show that the temperature coefficient of this laser interferometer can be reduced down to 1 pm/K with an incident angle of 0.267828 rad. The method presented in this paper can be used in the design of ultra-stable laser interferometers, especially for space-based gravitational waves detection.
    s=n(T)l(T).

    View in Article

    sA=l1+nl2+l3+l4+nl5+l6=l2(n1)+l5(n1)+lA0,

    View in Article

    sAdT=dl2(n1)dT+dl5(n1)dT+dlA0dT.

    View in Article

    dl2(n1)dT=2L1(sinθn)2{α(n1)+dndT[1sin2θ(n1)n(n2sin2θ)]},

    View in Article

    dl5(n1)dT=L1(sinθn)2{α(n1)+dndT[1sin2θ(n1)n(n2sin2θ)]}.

    View in Article

    dlA0dT=3αL+Lcosφ2αLcosθ3LcosφαL+2sinθ[αLtanθ2+Ltanφ(αL+L)tanφ]+[αLtanθ+Ltanφ(αL+L)tanφ].

    View in Article

    dsBdT=dlb(n1)dT+dlB0dT,

    View in Article

    dlB0dT=αL+LcosφαLcosθLcosφαL2+sinθ[αLtanθ+Ltanφ(αL+L)tanφ].

    View in Article

    dΔsdT=dsAdTdsBdT=dlA0dTdlB0dT+dl2(n1)dT.

    View in Article

    dsBdT=dlb(n1)dT+dlB0dT+dls1(n1)dT+dls2(n1)dT.

    View in Article

    dΔsdT=dsAdTdsBdT=dlA0dTdlB0dT+dl2(n1)dT2dls(n1)dT.

    View in Article

    dls(n1)dT=dls1(n1)dT=dls1(n1)dT=Ls1(sinθsn)2{α(n1)+dndT[1sin2θs(n1)n(n2sin2θs)]},

    View in Article

    Guanfang Wang, Zhu Li, Jialing Huang, Huizong Duan, Xiangqing Huang, Hongfan Liu, Qi Liu, Shanqing Yang, Liangcheng Tu, Hsien-Chi Yeh. Analysis and suppression of thermal effect of an ultra-stable laser interferometer for space-based gravitational waves detection[J]. Chinese Optics Letters, 2022, 20(1): 011203
    Download Citation