• Chinese Optics Letters
  • Vol. 20, Issue 11, 111401 (2022)
Yuzhuo Wang1、*, Yizun He1, Lingjing Ji1, Jiangyong Hu1, Xing Huang1, Yudi Ma1, Liyang Qiu1, Kaifeng Zhao2、3, and Saijun Wu1、**
Author Affiliations
  • 1Department of Physics, State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
  • 2Key Laboratory of Nuclear Physics and Ion-Beam Application (Ministry of Education), Fudan University, Shanghai 200433, China
  • 3Institute of Modern Physics, Department of Nuclear Science and Technology, Fudan University, Shanghai 200433, China
  • show less
    DOI: 10.3788/COL202220.111401 Cite this Article Set citation alerts
    Yuzhuo Wang, Yizun He, Lingjing Ji, Jiangyong Hu, Xing Huang, Yudi Ma, Liyang Qiu, Kaifeng Zhao, Saijun Wu. Intense, wideband optical waveform generation by self-balanced amplification of fiber electro-optical sideband modulation[J]. Chinese Optics Letters, 2022, 20(11): 111401 Copy Citation Text show less
    References

    [1] H. J. Metcalf, P. van der Straten. Laser Cooling and Trapping(1999).

    [2] R. Blatt, D. Wineland. Entangled states of trapped atomic ions. Nature, 453, 1008(2008).

    [3] A. D. Cronin, D. E. Pritchard. Optics and interferometry with atoms and molecules. Rev. Mod. Phys., 81, 1051(2009).

    [4] J. Mizrahi, C. Senko, B. Neyenhuis, K. G. Johnson, W. C. Campbell, C. W. S. Conover, C. Monroe. Ultrafast spin-motion entanglement and interferometry with a single atom. Phys. Rev. Lett., 110, 203001(2013).

    [5] J. F. Barry, D. J. Mccarron, E. B. Norrgard, M. H. Steinecker, D. Demille. Magneto-optical trapping of a diatomic molecule. Nature, 512, 286(2014).

    [6] S. A. Moses, K. G. Johnson, C. Monroe. Demonstration of two-atom entanglement with ultrafast optical pulses. Phys. Rev. Lett., 119, 230501(2017).

    [7] I. Kozyryev, L. Baum, K. Matsuda, B. L. Augenbraun, L. Anderegg, A. P. Sedlack, J. M. Doyle. Sisyphus laser cooling of a polyatomic molecule. Phys. Rev. Lett., 118, 173201(2017).

    [8] J. Thom, G. Wilpers, E. Riis, A. G. Sinclair. Accurate and agile digital control of optical phase, amplitude and frequency for coherent atomic manipulation of atomic systems. Opt. Express, 21, 18712(2013).

    [9] X. Miao, E. Wertz, M. G. Cohen, H. Metcalf. Strong optical forces from adiabatic rapid passage. Phys. Rev. A, 75, 011402(2007).

    [10] A. M. Jayich, A. C. Vutha, M. T. Hummon, J. V. Porto, W. C. Campbell. Continuous all-optical deceleration and single-photon cooling of molecular beams. Phys. Rev. A, 89, 023425(2014).

    [11] D. Heinrich, M. Guggemos, M. Guevara-Bertsch, M. I. Hussain, C. Roos, R. Blatt. Ultrafast coherent excitation of a 40Ca+ ion. New J. Phys., 21, 073017(2019).

    [12] X. Long, S. S. Yu, A. M. Jayich, W. C. Campbell. Suppressed spontaneous emission for coherent momentum transfer. Phys. Rev. Lett., 123, 033603(2019).

    [13] Y. He, L. Ji, Y. Wang, L. Qiu, J. Zhao, Y. Ma, X. Huang, S. Wu, D. E. Chang. Atomic spin-wave control and spin-dependent kicks with shaped sub-nanosecond pulses. Phys. Rev. Res., 2, 043418(2020).

    [14] C. P. Koch, M. Shapiro. Coherent control of ultracold photoassociation. Chem. Rev., 112, 4928(2012).

    [15] J. L. Carini, S. Kallush, R. Kosloff, P. L. Gould. Enhancement of ultracold molecule formation using shaped nanosecond frequency chirps. Phys. Rev. Lett., 115, 173003(2015).

    [16] M. O. Scully. Single photon subradiance: quantum control of spontaneous emission and ultrafast readout. Phys. Rev. Lett., 115, 243602(2015).

    [17] G. Facchinetti, S. D. Jenkins, J. Ruostekoski. Storing light with subradiant correlations in arrays of atoms. Phys. Rev. Lett., 117, 243601(2016).

    [18] Y. He, L. Ji, Y. Wang, L. Qiu, J. Zhao, Y. Ma, X. Huang, S. Wu, D. E. Chang. Geometric control of collective spontaneous emission. Phys. Rev. Lett., 125, 213602(2020).

    [19] D. Goswami. Optical pulse shaping approaches to coherent control. Phys. Rep., 374, 385(2003).

    [20] S. Zhdanovich, E. A. Shapiro, M. Shapiro, J. W. Hepburn, V. Milner. Population transfer between two quantum states by piecewise chirping of femtosecond pulses: theory and experiment. Phys. Rev. Lett., 100, 103004(2008).

    [21] Y. Ma, X. Huang, X. Wang, L. Ji, Y. He, L. Qiu, J. Zhao, Y. Wang, S. Wu. Precise pulse shaping for quantum control of strong optical transitions. Opt. Express, 28, 17171(2020).

    [22] C. E. Rogers, P. L. Gould. Nanosecond pulse shaping at 780 nm with fiber-based electro-optical modulators and a double-pass tapered amplifier. Opt. Express, 24, 2596(2016).

    [23] B. Kaufman, T. Paltoo, T. Grogan, T. Pena, J. P. S. John, M. J. Wright. Pulsed, controlled, frequency-chirped laser light at GHz detuings for atomic physics experiments. Appl. Phys. B, 123, 58(2017).

    [24] X. Wu, F. Zi, J. Dudley, R. J. Bilotta, P. Canoza, H. Müller. Multiaxis atom interferometry with a single-diode laser and a pyramidal magneto-optical trap. Optica, 4, 1545(2017).

    [25] B. S. Clarke, P. L. Gould. Amplification of arbitrary frequency chirps of pulsed light on nanosecond timescales(2021).

    [26] C. D. Macrae, K. Bongs, M. Holynski. Optical frequency generation using fiber Bragg grating filters for applications in portable quantum sensing. Opt. Lett., 46, 1257(2021).

    [27] Y. He, Q. Cai, L. Ji, Z. Fang, Y. Wang, L. Qiu, L. Zhou, S. Wu, S. Grava, D. E. Chang. Unraveling disorder-induced optical dephasing in an atomic ensemble(2021).

    [28] V. Bolpasi, W. V. Klitzing. Double-pass tapered amplifier diode laser with an output power of 1 W for an injection power of only 200 µW. Rev. Sci. Instrum., 81, 113108(2010).

    [29] A. F. Forrest, M. Krakowski, P. Bardella, M. A. Cataluna. Double-pass amplification of picosecond pulses with a tapered semiconductor amplifier. Opt. Express, 27, 30752(2019).

    [30] G. P. Agrawal, N. A. Olsson. Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers. IEEE J. Quantum Electron., 25, 2297(1989).

    [31] M. Y. Hong, Y. H. Chang, A. Dienes, J. P. Heritage, P. J. Delfyett. Subpicosecond pulse amplification in semiconductor laser amplifiers: theory and experiment. IEEE J. Quantum Electron., 30, 1122(1994).

    [32] F. C. Cruz, M. C. Stowe, J. Ye. Tapered semiconductor amplifiers for optical frequency combs in the near infrared. Opt. Lett., 31, 1337(2006).

    [33] P. P. Baveja, D. N. Maywar, A. M. Kaplan, G. P. Agrawal. Self-phase modulation in semiconductor optical amplifiers: impact of amplified spontaneous emission. IEEE J. Quantum Electron., 46, 1396(2010).

    [34] H. Luo, K. Li, D. Zhang, T. Gao, K. Jiang. Multiple side-band generation for two-frequency components injected into a tapered amplifier. Opt. Lett., 38, 1161(2013).

    [35] Z. X. Meng, Y. H. Li, Y. Y. Feng. Two-frequency amplification in a semiconductor tapered amplifier for cold atom experiments. Chin. Phys. B, 27, 094201(2018).

    [36] More specifically, a ωM bound can be evaluated by considering the minimal distance between the desired sideband and other sidebands. The 4 GHz modulation bandwidth in this work considers a minimal frequency separation equal to half the bandwidth itself.

    [37] J. D. White, R. E. Scholten. Compact diffraction grating laser wavemeter with sub-picometer accuracy and picowatt sensitivity using a webcam imaging sensor. Rev. Sci. Instrum., 83, 113104(2012).

    [38] P. Palittapongarnpim, A. Macrae, A. I. Lvovsky. Note: a monolithic filter cavity for experiments in quantum optics. Rev. Sci. Instrum., 83, 066101(2012).

    [39] Y. Wang, J. Zhao, X. Huang, L. Qiu, L. Ji, Y. Ma, Y. He, J. P. Sobol, S. Wu. Imaging moving atoms by holographically reconstructing the dragged slow light(2021).

    [40] H. Wallis, W. Ertmer. Broadband laser cooling on narrow transitions. J. Opt. Soc. Am. B, 6, 2211(1989).

    [41] A. Dunning, R. Gregory, J. Bateman, M. Himsworth, T. Freegarde. Interferometric laser cooling of atomic rubidium. Phys. Rev. Lett., 115, 073004(2015).

    [42] M. Weitz, T. W. Hänsch. Frequency-independent laser cooling based on interferometry. Europhys. Lett., 49, 302(2000).

    Data from CrossRef

    [1] Liyang Qiu, Lingjing Ji, Jiangyong Hu, Yizun He, Yuzhuo Wang, Saijun Wu. Spinor Matter-Wave Control with Nanosecond Spin-Dependent Kicks. PRX Quantum, 3, 040301(2022).

    Yuzhuo Wang, Yizun He, Lingjing Ji, Jiangyong Hu, Xing Huang, Yudi Ma, Liyang Qiu, Kaifeng Zhao, Saijun Wu. Intense, wideband optical waveform generation by self-balanced amplification of fiber electro-optical sideband modulation[J]. Chinese Optics Letters, 2022, 20(11): 111401
    Download Citation