• Laser & Optoelectronics Progress
  • Vol. 49, Issue 6, 60004 (2012)
Wu Quan1、2、3、*, Fan Zhongwei1、3, Yu Jin1, Shi Zhaohui3, Zhang Xue1, and Liu Yang1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/lop49.060004 Cite this Article Set citation alerts
    Wu Quan, Fan Zhongwei, Yu Jin, Shi Zhaohui, Zhang Xue, Liu Yang. Research Progress of Nanosecond Regime Pulsed Fiber Lasers[J]. Laser & Optoelectronics Progress, 2012, 49(6): 60004 Copy Citation Text show less
    References

    [1] Lou Qihong, Zhou Jun, Zhang Haibo et al.. Recent progress of large core fiber lasers (invited paper)[J]. Chinese J. Lasers, 2010, 37(9): 2235~2241

    [2] Liao Suying, Gong Mali. New progress of large mode area fibers[J]. Infrared and Laser Engineering, 2011, 40(3): 455~462

    [3] Liu Songhao. New progress of fiber lasers[J]. Optoelectronic Technology and Information, 2003, 16(1): 1~8

    [4] Lou Qihong, Zhou Jun, Zhu Jianqiang et al.. Recent progress of high-power fiber lasers[J]. Infrared and Laser Engineering, 2006, 35(2): 135~138

    [5] T. Eidam, S. Hanf, T. V. Andersen et al.. 830 W average power femtosecond fiber CPA system[J]. ASSP, 2010, AWA2

    [6] B. Oktem, H. Kalayciolu, F. . Ilday. MicroJoule pulse energies at 1 MHz repetition rate from an all fiber nonlinear chirped pulse amplifier[J]. ASSP, 2010, AWA4

    [7] Zhang Zhigang. Advances in high repetition rate femtosecond fiber lasers[J]. Acta Optica Sinica, 2011, 31(9): 0900130

    [8] Duan Yunfeng, Huang Bangcai, Zhang Peng et al.. All-fiber laser pulse amplifier[J]. Chinese J. Lasers, 2007, 34(10): 1379~1382

    [9] Du Songtao, Zhou Jun, Zhang Fangpei et al.. 20-W average power, high repetition rate, nanosecond pulse with diffraction limit from an all-fiber MOPA sysem[J]. Microwave and Optical Technology Letters, 2008, 50(10): 2546~2549

    [10] Liu Xia, Du Songtao, Xue Yuhao et al.. High repetition rate nanosecond pulse fiber amplifier based on China-made large-mode-area fiber[J]. Chinese J. Lasers, 2009, 36(7): 1876~1879

    [11] Feng Yutong, Du Songtao, Yang Yan et al.. All-fiber laser based on LD pulse-modulated MOPA architcture[J]. Chinese J. Lasers, 2009, 36(8): 1932~1936

    [12] J. A. Alvarez-Chavez, H. L. Offerhaus, J. Nilsson et al.. High-energy, high-power ytterbium-doped Q-switched fiber laser[J]. Opt. Lett., 2000, 25(1): 37~39

    [13] Zhou Cuiyun, Liu Yuan, Du Songtao et al.. 1030 nm high repetition rate nanosecond pulse all fiber amplifier[J]. Chinese J. Lasers, 2011, 38(8): 0802010

    [14] Liu Wei, Chen Tao, Dai Jianning et al.. All-fiberized Yb fiber laser with passively generated sub-nanosecond pulse output[J]. Acta Optica Sinica, 2011, 31(12): 1214003

    [15] Xu Lin, Tang Yulong, Zhang Shuaiyi et al.. High power pulsed 2 μm fiber main-oscillator power-amplifier sestem[J]. Chinese J. Lasers, 2010, 37(9): 2384~2388

    [16] Su Rongtao, Zhou Pu, Xiao Hu et al.. MOPA structured single-frequency nanosecond pulsed laser in all fiber format[J]. Chinese J. Lasers, 2011, 38(11): 1102013

    [17] Xiong Huiping, Chen Tao, Shen Yonghang et al.. All fiberized linearly polarized pulsed Yb fiber laser with high repetition rate[J]. Acta Optica Sinica, 2011, 31(s1): s100201

    [18] Lou Qihong. High-Power Fiber Laser and its Amplications[M]. Hefei: Press of University of Science and Thechnology of China, 2010

    [19] Zhou Bingkun, Gao Yizhi, Chen Tirong et al.. The Principles of Laser[M]. Beijing: National Defense Industry Press, 2010. 222~223

    [20] Z. J. Chen, A. B. Grudinin, J. Porta et al.. Enhanced Q-switching in double-clad fiber lasers[J]. Opt. Lett., 1998, 23(6): 454~456

    [21] Fan Yaxian, Lu Fuyun, Hu Shuling et al.. Tunable high-peak-power, high-energy hybrid Q-switched double-clad fiber laser[J]. Opt. Lett., 2004, 29(7): 724~726

    [22] F. D. Teodoro, C. D. Brooks, Multistage. Yb-doped fiber amplifier generating megawatt peak-power, subnanosecond pulses[J]. Opt. Lett., 2005, 30(24): 3299~3301

    [23] Li Mingjun, Chen Xin, Wang Ji et al.. Al/Ge co-doped latge mode area fiber with high SBS threshold[J]. Opt. Lett., 2007, 15(13): 8290~8299

    [24] Wu Zhonglin, Lou Qihong, Zhou Jun et al.. Research progress of pumping methods for fiber laser[J]. Laser & Optoelectronics Progress, 2004, 42(4): 30~34

    [25] Zhang Fan, Wan Chunchan, Tong Zhi. A new effective couple technology of side-pump[J]. Chinese J. Lasers, 2006, 33(11): 1447~1452

    [26] Huang Lin, Dai Zhiyong, Liu Yongzhi. Influences of pumping manners on characteristics of all-fiber acousto-optic Q-switched lasers under different pulse repetition rates[J]. Acta Physica Sinica, 2009, 58(10): 6992~6999

    [27] J. P. Koplow, D. A. V. Kliner, L. Goldberg. Single-mode operation of a coiled multimode fiber amplifier[J]. Opt. Lett., 2000, 25(7): 422~444

    [28] D. A. V. Kliner, J. P. Koplow. Power scaling of diffraction limited fiber sources[C]. SPIE, 2005, 5647: 550~556

    [29] Libo Li, Qihong Lou, Jun Zhou et al.. High power low-order modes operation of a multimode fiber laser[J]. Chin. Opt. Lett., 2007, 5(4): 221~222

    [30] J. A. Alvarez-Chavez, B. J. Gruding, J. Nilsson et al.. Mode selection in high power cladding punped fiber lasers with tapered section[C]. CLEO′99, 1999: 247~248

    [31] Li Libo, Lou Qihong, Zhou Jun et al.. Mode selection of a tapered large-mode-area fiber laser[J]. Chinese J. Lasers, 2007, 34(12): 1652~1658

    [32] J. Limpert, H. Zellmer, A. Tunnermann et al.. Suppression of high order modes in a multimode fiber amplifier using efficient gain-loss-management (GLM)[J]. Advanced Solid-State Lasers, 2002, 68: MB20

    [33] M. Hotoleanu, M. Soderlund, D. Kliner et al.. High order modes suppression in large mode area active fibers by controlling the radial distribution of the rare earth dopant[C]. SPIE, 2006, 6102: 61021T

    [34] U. Griebner, R. Koch, H. Schonnagel et al.. Efficient laser operation with nearly diffraction-limited output from a diode-puped heavily Nd-doped multimode fiber[J]. Opt. Lett., 1996, 21(4): 266~268

    [35] U. Griebner, H. Schonnagel. Laser operation with nearly diffraction-limited output from a YbYAG multimode channel waveguide[J]. Opt. Lett., 1999, 24(11): 750~752

    [36] Liao Suying, Gong Mali, Zhang Haitao. Selection of doping radius for part-doped fibers[J]. Chinese J. Lasers, 2009, 36(11): 2836~2841

    [37] Song Xiaoyan, Zhang Wentao, Li Fang et al.. Experimental investigation of bending characteristics of distributed feed back fiber lasers[J]. Acta Photonica Sinica, 2011, 40(6): 807~810

    [38] Liao Suying, Gong Mali. New development of nonlinearity management in high power fiber lasers and amplifiers[J]. Laser & Optoelectronics Progress, 2007, 44(6): 27~33

    [39] A. Tünnermann, T. Schreiber, J. Limpert. Fiber lasers and amplifiers: an ultrafast performance evolution[J]. Appl. Opt., 2010, 49(25): F71~F78

    [40] I. P. Alcock, A. C. Tropper, A. I. Ferguson et al.. Q-switched operation of a neodymium-doped monomode fiber laser[J]. Electron. Lett., 1986, 22(2): 84~85

    [41] C. C. Renaud, J. A. Alvarez-Chavez, J. K. Sahu et al.. 7.7 mJ pulses from a large core Yb-doped cladding pumped Q-switched fibre laser[C]. Conference on Lasers and Electro Opties (CLEO), Technical Digest, Optical Society of Aemerica, Washington, DC, 2001, 56: 219

    [42] Yoonchan Jeong, J. K. Sahu, M. Laroche et al.. 120-W Q-switched cladding-pumped Yb-doped fiber laser[C]. CLEO/Europe- EQEc 2003, 2003,27E,CL5-4

    [43] O. Schmidt, F. Roser, S. Linke et al.. High energy and high average power Q-switched photonic crystal fiber laser[J]. OSA/ASSP, 2006, WA5

    [44] O. Schmidt, J. Rothhardt, F. Rser et al.. Millijoule pulse energy Q-switched short-length fiber laser[J]. Opt. Lett., 2007,32(11): 1551~1553

    [45] M. Eichhorn, S. D. Jackson. High-pulse-energy, actively Q-switched Tm3+,Ho3+-codoped silica 2 μm fiber laser[J]. Opt. Lett., 2008, 33(10): 1044~1046

    [46] Tang Yulong, Xu Liu, Yang Yi. High-power gain-switched Tm3+-doped fiber laser[J]. Opt. Express, 2010, 18(22): 22964~22972

    [47] S. Tokita, M. Murakami, S. Shimizu. 12 W Q-switched ErZBLAN fiber laser at 2.8 μm[J]. Opt. Lett., 2011, 36(15): 2812~2814

    [48] M. Laurila, J. Saby, T. T. Alkeskjold et al.. Q-switching and efficient harmonic generation from a single mode LMA photonic bandgap rod fiber laser[J]. Opt. Lett., 2011, 19(11): 10824~10833

    [49] IPG, YLP senes 1 to 10 mJ pulsed ytterbium fiber laser [EB/OL]. http://www.ipgphotonics.com/apps_mat_q_YPL_Series_10mj.htm

    [50] J. Limpert, S. Hofer, A. Liem et al.. 100-W average-power, high-energy nanosecond fiber amplifier[J]. Appl. Phys. B, 2002, 75(4): 477~479

    [51] V. Philippov, C. Codemard, Y. Jeong et al.. High-energy in fiber pulse amplification for coherent lidar applications[J]. Opt. Lett., 2004, 29(22): 2590~2592

    [52] M. Cheng, Y. Chang, A. Galvanauskas et al.. High-energy and high-peak-power nanosecond pulse generation with beam quality control in 200 μm core highly multimode Yb-doped fiber amplifiers[J]. Opt. Lett., 2005, 30(4): 358~360

    [53] Kong Linfeng, Lou Qihong, Zhou Jun et al.. 133-W pulsed fiber amplifier with large-mode-area fiber[J]. Opt. Engng., 2006, 45(1): 010502

    [54] F. D. Teodoro, C. D. Brooks. Multi-MW peak power, single transverse mode operation of a 100 micron core diameter, Yb-doped photonic crystal rod amplifier[C]. SPIE, 2006, 6453: 645318

    [55] IPG photonics announces major expansion of ytterbium pulsed fiber laser offerings[R].2007, http://investor.ipgphotonics.com/releasedetail.cfm ReleaseID=250035

    [56] Cunxiao Gao, Shaolan Zhu, Wei Zhao. Eye-safe, high-energy, single-mode all-fiber laser with widely tunable repetition rate[J]. Chin. Opt. Lett., 2009, 7(7): 611~613

    [57] J. Boullet, R. Dubrasquet, C. Medina. Millijoule-class Yb-doped pulsed fiber laser operating at 977 nm[J]. Opt. Lett., 2010, 25(10): 1650~1652

    [58] W. Shi, E. B. Petersen, Z. D. Yao et al.. Kilowatt-level stimulated-Brillouin-scattering -threshold monolithic transform-limited 100 ns pulsed fiber laser at 1530 nm[J]. Opt. Lett., 2010, 35(14): 2418~2420

    [59] J. He, P.Yan, Q. Liu et al.. 30 W output of short pulse duration nanosecond green laser generated by a hybrid fiber-bulk MOPA system[J]. Laser Phys., 2011, 21(4): 708~711

    [60] Gavind P. Agrawal. Principles of Nonlinear Fiber Optics & Applications[M]. Jia dongfang, Yu zhenhong et al., Transl.. Beijing:Publishing House of Electronics Industry, 2010

    [61] R. G. Smith. Optical power handling capacity of low loss optical fibers as determined by stimulated raman and Brillouin scattering[J]. Appl. Opt., 1972, 11(11): 2489~2494

    [62] J. Limpert, O. Schmidt, J. Rothhardtet et al.. Extended single-mode photonic crystal fiber lasers[J]. Opt. Express, 2006, 14(7): 2715~2720

    [63] L. Lavoute, P. Roy, A. D. Berthelemot et al.. Design of microstructured single-mode fiber combining large mode area and high rare earth ion concentration[J]. Opt. Express, 2006, 14(7): 2994~2999

    [64] S. Tammela, M. Soderlund, J. Koponen et al.. The potential of direct nanoparticle deposition for the next generation of optical fibers[C]. SPIE, 2006, 6116: 61160G

    [65] Liu Anping. Novel SBS suppression scheme for high power fiber amplifiers[C]. SPIE, 2006, 6102: 61021R

    [66] S. Gray, D. T. Walton, X. Chen et al.. Optical fibers with tailored acoustic speed profiles for suppressing stimulated Brillouin scattering in high-power, single-frequency sources[J]. IEEE. J. of Sel. Top. Quantum Electron., 2009, 15(1): 37~45

    [67] M. A. Lapointe, S. Chatigny, M. Piché et al.. Thermal effects in high-power CW fiber lasers[C]. SPIE, 2009, 7195: 71951U

    [68] B. C. Stuart, M. D. Feit, A. M. Rubenchik et al.. Laser induced damage in dielectrics with nanosecond to subpicosecond pulses[J]. Phys. Rev. Lett., 1995, 74(12): 2248~2251

    [69] W. Torruellas, Y. Chen, B. McIntosh et al.. High peak power ytterbium-doped fiber amplifiers[C]. SPIE, 2006, 6102: 61020N

    [70] A. V. Smith, B. T. Do. Bulk and surface laser damage of silica by picosecond and nanosecond pulses at 1064 nm[J]. Appl. Opt., 2008, 47(26): 4812~4832

    [71] M. Efimov. Intrinsic laser-induced damage in bulk transparent dielectrics[C]. in Proceedings of the Conference on Lasers and Electro-Optics, 2010 OSA Technical Digest Series (Optical Society of America, 2010), 2010, CFG1

    CLP Journals

    [1] Qu Pengfei, Wang Shiyu, Guo Zhen, Cai Defang, Li Bingbin. Composite Application Techonolgy of Nd∶YAG and Nd∶YVO4 Crystal in end Pumped Solid-State Laser[J]. Acta Optica Sinica, 2016, 36(7): 714002

    [2] Jin Yu, Du Lin, Jiang Guobao, Zhao Chujun. All-Optical Tunable Q-Switched Fiber Laser Based on Bismuth Telluride Nanosheets[J]. Chinese Journal of Lasers, 2017, 44(7): 703014

    [3] Jin Dongchen, Sun Ruoyu, Wei Shouyu, Ren Jun, Liu Jiang, Wang Qian, Wang Pu. 1570 nm Nanosecond Pulse Generation from Er/Yb Co-Doped All-Fiber Dual-Cavity Laser with Fiber-Based Passive Q-Switched[J]. Chinese Journal of Lasers, 2015, 42(10): 1002006

    Wu Quan, Fan Zhongwei, Yu Jin, Shi Zhaohui, Zhang Xue, Liu Yang. Research Progress of Nanosecond Regime Pulsed Fiber Lasers[J]. Laser & Optoelectronics Progress, 2012, 49(6): 60004
    Download Citation