• Laser & Optoelectronics Progress
  • Vol. 56, Issue 17, 170603 (2019)
Changming Xia and Guiyao Zhou*
Author Affiliations
  • Guangzhou Key Laboratory for Special Fiber Photonic Devices and Applications, South China Normal University, Guangzhou, Guangdong 510006, China
  • show less
    DOI: 10.3788/LOP56.170603 Cite this Article Set citation alerts
    Changming Xia, Guiyao Zhou. Progress and Prospect of Microstructured Optical Fibers[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170603 Copy Citation Text show less
    References

    [1] Russell P. Photonic crystal fibers[J]. Science, 299, 358-362(2003).

    [2] Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical Review Letters, 58, 2059-2062(1987).

    [3] Yablonovitch E, Gmitter T, Leung K. Photonic band structure: the face-centered-cubic case employing nonspherical atoms[J]. Physical Review Letters, 67, 2295-2298(1991).

    [4] Knight J C, Birks T A. Russell P St J, et al. All-silica single-mode optical fiber with photonic crystal cladding[J]. Optics Letters, 21, 1547-1549(1996).

    [5] Knight J C. Photonic crystal fibres[J]. Nature, 424, 847-851(2003).

    [6] Ranka J K, Windeler R S, Stentz A J. Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm[J]. Optics Letters, 25, 25-27(2000).

    [7] Kuhlmey B T, White T P, Renversez G et al. Multipole method for microstructured optical fibers. II. Implementation and results[J]. Journal of the Optical Society of America B, 19, 2331-2340(2002).

    [8] White T P, Kuhlmey B T. McPhedran R C, et al. Multipole method for microstructured optical fibers. I. Formulation[J]. Journal of the Optical Society of America B, 19, 2322-2330(2002).

    [9] Steel M J. White T P, de Sterke C M, et al. Symmetry and degeneracy in microstructured optical fibers[J]. Optics Letters, 26, 488-490(2001).

    [10] Limpert J, Schreiber T, Nolte S et al. High-power air-clad large-mode-area photonic crystal fiber laser[J]. Optics Express, 11, 818-823(2003).

    [11] Wadsworth W J, Percival R M, Bouwmans G et al. High power air-clad photonic crystal fibre laser[J]. Optics Express, 11, 48-53(2003).

    [12] Limpert J, Schreiber T, Liem A et al. Thermo-optical properties of air-clad photonic crystal fiber lasers in high power operation[J]. Optics Express, 11, 2982-2990(2003).

    [13] Wu D K C, Kuhlmey B T, Eggleton B J. Ultrasensitive photonic crystal fiber refractive index sensor[J]. Optics Letters, 34, 322-324(2009).

    [14] Dong X Y, Tam H Y, Shum P. Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer[J]. Applied Physics Letters, 90, 151113(2007).

    [15] Rindorf L, Jensen J B, Dufva M et al. Photonic crystal fiber long-period gratings for biochemical sensing[J]. Optics Express, 14, 8224-8231(2006).

    [16] Bjarklev A, Lin C. Applications of photonic crystal fibers in optical communications - what is in the future?. [C]∥2005 IEEE LEOS Annual Meeting Conference Proceedings, October 22-28, 2005, Sydney, NSW, Australia. New York: IEEE, 812-813(2005).

    [17] Sang X Z, Chu P L, Yu C X. Applications of nonlinear effects in highly nonlinear photonic crystal fiber to optical communications[J]. Optical and Quantum Electronics, 37, 965-994(2005).

    [18] Xi X M. Wong G K L, Frosz M H, et al. Orbital-angular-momentum-preserving helical Bloch modes in twisted photonic crystal fiber[J]. Optica, 1, 165-169(2014).

    [19] McNab S J, Moll N, Vlasov Y A. Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides[J]. Optics Express, 11, 2927-2939(2003).

    [20] Palma-Vega G, Beier F, Stutzki F et al. High average power transmission through hollow-core fibers. [C]∥Laser Congress 2018 (ASSL), November 4-8, 2018, Boston, Massachusetts, United States. Washington, D.C.: OSA, ATh1A, 7(2018).

    [21] Temelkuran B, Hart S D, Benoit G et al. Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission[J]. Nature, 420, 650-653(2002).

    [22] Konorov S O, Fedotov A B, Kolevatova O A et al. Laser breakdown with millijoule trains of picosecond pulses transmitted through a hollow-core photonic-crystal fibre[J]. Journal of Physics D: Applied Physics, 36, 1375-1381(2003).

    [23] Birks T A, Knight J C. Russell P St J. Endlessly single-mode photonic crystal fiber[J]. Optics Letters, 22, 961-963(1997).

    [24] Dudley J M, Taylor J R. Ten years of nonlinear optics in photonic crystal fibre[J]. Nature Photonics, 3, 85-90(2009).

    [25] Ortigosa-Blanch A, Knight J C, Wadsworth W J et al. Highly birefringent photonic crystal fibers[J]. Optics Letters, 25, 1325-1327(2000).

    [26] Knight J C, Birks T A, Cregan R F et al. Large mode area photonic crystal fibre[J]. Electronics Letters, 34, 1347-1348(1998).

    [27] Knight J C, Arriaga J, Birks T A et al. Anomalous dispersion in photonic crystal fiber[J]. IEEE Photonics Technology Letters, 12, 807-809(2000).

    [28] Ferrando A, Silvestre E, Miret J J et al. Nearly zero ultraflattened dispersion in photonic crystal fibers[J]. Optics Letters, 25, 790-792(2000).

    [29] Reeves W, Knight J, Russell P et al. Demonstration of ultra-flattened dispersion in photonic crystal fibers[J]. Optics Express, 10, 609-613(2002).

    [30] Belardi W, Knight J C. Hollow antiresonant fibers with reduced attenuation[J]. Optics Letters, 39, 1853-1856(2014).

    [31] Markos C, Travers J C, Abdolvand A et al. Hybrid photonic-crystal fiber[J]. Reviews of Modern Physics, 89, 045003(2017).

    [32] Wadsworth W J. Photonic crystal fibers. [C]∥Specially Optical Fibers 2011, June 12-15, 2011, Toronto, Canada. Washington, D.C.: OSA, SOMD3(2011).

    [33] Poli F, Cucinotta A, Selleri S. Photonic crystal fibers[M]. Netherlands: Springer(2007).

    [34] Cregan R F, Mangan B J, Knight J C et al. Single-mode photonic band gap guidance of light in air[J]. Science, 285, 1537-1539(1999).

    [35] Poletti F, Petrovich M N, Richardson D J. Hollow-core photonic bandgap fibers: technology and applications[J]. Nanophotonics, 2, 315-340(2013).

    [36] Markos C, Nielsen K, Bang O. Antiresonant guiding in a poly(methyl-methacrylate) hollow-core optical fiber[J]. Journal of Optics, 17, 105603(2015).

    [37] Chillcce E F. Cordeiro C M B, Barbosa L C, et al. Tellurite photonic crystal fiber made by a stack-and-draw technique[J]. Journal of Non-Crystalline Solids, 352, 3423-3428(2006).

    [38] Pysz D, Kujawa I, Stępień R et al. Stack and draw fabrication of soft glass microstructured fiber optics[J]. Bulletin of the Polish Academy of Sciences Technical Sciences, 62, 667-682(2014).

    [39] Ma J, Yu H H, Jiang X et al. High-performance temperature sensing using a selectively filled solid-core photonic crystal fiber with a central air-bore[J]. Optics Express, 25, 9406-9415(2017).

    [40] George A K, Reeves W H et al. . Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation[J]. Optics Express, 10, 1520-1525(2002).

    [41] Webb A S. Suspended-core holey fiber for evanescent-field sensing[J]. Optical Engineering, 46, 010503(2007).

    [42] Becker M, Werner M, Fitzau O et al. Laser-drilled free-form silica fiber preforms for microstructured optical fibers[J]. Optical Fiber Technology, 19, 482-485(2013).

    [43] Bertoncini A, Rajamanickam V P, Liberale C. On-fiber 3D printing of photonic crystal fiber tapers for mode field diameter conversion. [C]∥2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), June 25-29, 2017, Munich, Germany. New York: IEEE, 17332724(2017).

    [44] Zhou G Y, Hou Z Y, Li S G et al. Fabrication of glass photonic crystal fibers with a die-cast process[J]. Applied Optics, 45, 4433-4436(2006).

    [45] George A K, Knight J C et al. . Tellurite photonic crystal fiber[J]. Optics Express, 11, 2641-2645(2003).

    [46] Zhang P Q, Zhang J, Yang P L et al. Fabrication of chalcogenide glass photonic crystal fibers with mechanical drilling[J]. Optical Fiber Technology, 26, 176-179(2015).

    [47] Andrew T[2019-04-15]. MIT figured out how to 3D print using glass instead of plastic USA: MIT.[2019-04-15]. https://www.engadget.com/2015/08/21/mit-figured-out-how-to-3d-print-using-glass-instead-of-plastic/..

    [48] Camposeo A, Persano L, Farsari M et al. Additive manufacturing: applications and directions in photonics and optoelectronics[J]. Advanced Optical Materials, 7, 1800419(2019).

    [49] Destino J F, Dudukovic N A, Johnson M A et al. 3D printed optical quality silica and silica-titania glasses from sol-gel feedstocks[J]. Advanced Materials Technologies, 3, 1700323(2018).

    [50] Cook K, Canning J, Leon-Saval S et al. Air-structured optical fiber drawn from a 3D-printed preform[J]. Optics Letters, 40, 3966-3969(2015).

    [53] Zubel M G, Fasano A, Woyessa G et al. 3D-printed PMMA preform for hollow-core POF drawing. [C]∥Proceedings of the 25th International Conference on Plastic Optical Fibers 2016, September 13-15, 2016, Aston University, Birmingham, United Kingdom. Birmingham: University of Aston(2016).

    [54] Kotz F, Arnold K, Bauer W et al. Three-dimensional printing of transparent fused silica glass[J]. Nature, 544, 337-339(2017).

    [55] Knight J C, Skryabin D V. Nonlinear waveguide optics and photonic crystal fibers[J]. Optics Express, 15, 15365-15376(2007).

    [56] Wadsworth W J, Ortigosa-Blanch A, Knight J C et al. Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source[J]. Journal of the Optical Society of America B, 19, 2148-2155(2002).

    [57] Hansen K, Imam H. Photonic crystal fiber[J]. Optik & Photonik, 5, 37-41(2010).

    [64] Yang J J, Han Y, Wang W et al. Deep ultraviolet supercontinuum study in the highly nonlinear photonic crystal fiber[J]. Spectroscopy and Spectral Analysis, 37, 1215-1219(2017).

    [65] Liu Z L, Zhang C L. Tapered Yb 3+-doped photonic crystal fiber for blue-enhanced supercontinuum generation [J]. Optik, 161, 172-179(2018).

    [66] Zervas M N, Codemard C A. High power fiber lasers: a review[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 219-241(2014).

    [67] Liu S, Zhan H, Peng K et al. Multi-kW Yb-doped aluminophosphosilicate fiber[J]. Optical Materials Express, 8, 2114-2124(2018).

    [69] IPG Photonics[2019-04-15]. Lasers[2019-04-15].https:∥www.ipgphotonics.com/en/products/lasers..

    [71] Février S, Gaponov D D, Roy P et al. High-power photonic-bandgap fiber laser[J]. Optics Letters, 33, 989-991(2008).

    [72] Wadsworth W J, Knight J C. Russell P S J, et al. Large mode area photonic crystal fibre laser. [C]∥Conference on Lasers and Electro-Optics, May 11, 2001, Baltimore, MD, USA. New York: IEEE, 319(2001).

    [73] Limpert J, Deguil-Robin N, Manek-Hönninger I et al. High-power rod-type photonic crystal fiber laser[J]. Optics Express, 13, 1055-1058(2005).

    [74] NKT Photonics[2019-04-15]. AeroGAIN-ROD high power ytterbium rod fiber gain modules [2019-04-15].https://www.nktphotonics.com/lasers-fibers/product/aerogain-rod-high-power-ytterbium-rod-fiber-gain-modules/..

    [75] Gaida C, Kadwani P, Leick L et al. CW-lasing and amplification in Tm 3+-doped photonic crystal fiber rod [J]. Optics Letters, 37, 4513-4515(2012).

    [76] Kadwani P, Modsching N, Sims R A et al. Lasing in thulium doped polarizing photonic crystal fibers (PCF)[J]. Proceedings of SPIE, 8237, 82372Z(2012).

    [77] Wu X, Zhang L, Liu C X et al. High-stable, double-pass forward superfluorescent fiber source based on erbium-doped photonic crystal fiber[J]. Applied Physics B, 114, 433-438(2014).

    [78] Wang F, Wang M, Feng S Y et al. Large-mode-area photonic crystal fiber towards pulse laser amplification based on YbAl/P/F codoped silica glass. [C]∥Advanced Solid States Laser 2018, November 4-8, 2018, Boston, Massachusetts, United States. Washington, D.C.: OSA, ATh1A, 5(2018).

    [79] Pedrazza U, Romano V, Lüthy W. Yb 3+: Al 3+: sol-gel silica glass fiber laser [J]. Optical Materials, 29, 905-907(2007).

    [80] Li Z L, Wang S K, Wang X et al. Spectral properties of Tm 3+-doped silica glasses and laser behaviors of fibers by sol-gel technology [J]. Chinese Journal of Lasers, 40, 0806003(2013).

    [81] Xie F H, Shao C Y, Wang M et al. Photodarkening-resistance improvement of Yb 3+/Al 3+ co-doped silica fibers fabricated via sol-gel method [J]. Optics Express, 26, 28506-28516(2018).

    [82] Liu S J, Li H Y, Tang Y X et al. Effect of Al2O3 content on physical and spectroscopic properties of Yb 3+-doped silica glass by sol-gel method [J]. Rare Metal Materials and Engineering, 41, 568-571(2012).

    [83] Liu S J. Investigation on fabrication and spectroscopic properties of Yb 3+ doped silica glass and PCF fiber by sol-gel method [D]. Beijing: Graduate University of the Chinese Academy of Sciences(2012).

    [84] Leich M, Just F, Langner A et al. Highly efficient Yb-doped silica fibers prepared by powder sinter technology[J]. Optics Letters, 36, 1557-1559(2011).

    [85] Zhang W, Wu J L, Zhou G Y et al. Yb-doped silica glass and photonic crystal fiber based on laser sintering technology[J]. Laser Physics, 26, 035801(2016).

    [86] Xia C M, Zhou G Y, Liu J T et al. Optical properties of Yb 3+/Ho 3+ co-doped air cladding silica-based fiber fabricated with plasma non-chemical vapor deposition method [J]. Applied Physics A, 118, 525-530(2015).

    [87] Zhang W, Liu J T, Zhou G Y et al. Optical properties of the Yb/Er co-doped silica glass prepared by laser sintering technology[J]. Optical Materials Express, 7, 1708-1715(2017).

    [88] Xia C M, Zhou G Y, Liu J T et al. Fabrication and laser performance of Yb 3+/Al 3+ co-doped photonic crystal fiber synthesized by plasma nonchemical vapor deposition method [J]. Optical Fiber Technology, 25, 20-24(2015).

    [89] Chen G, Jiang Z W, Peng J G et al. Study of air-clad large-mode-area ytterbium doped photonic crystal fiber[J]. Acta Physica Sinica, 61, 144206(2012).

    [90] Chu Y B, Liu Y G, Liu C B et al. Extra-large-core Yb 3+ doped fiber and its laser research based on glass phase-separation technique [J]. Chinese Journal of Lasers, 45, 1201005(2018).

    [91] Schuster K, Grimm S, Kalide A et al. Evolution of fluorine doping following the REPUSIL process for the adjustment of optical properties of silica materials[J]. Optical Materials Express, 5, 887-897(2015).

    [92] Zhu Y, Lorenz M, Eschrich T et al. Laser beam quality improvement of REPUSIL-based rod amplifier with local short adiabatic taper[J]. Proceedings of SPIE, 10512, 105121H(2018).

    [93] Schuster K, Unger S, Aichele C et al. Material and technology trends in fiber optics[J]. Advanced Optical Technologies, 3, 447-468(2014).

    [94] Allen L, Beijersbergen M W. Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 45, 8185-8189(1992).

    [95] Wang J, Yang J Y, Fazal I M et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature Photonics, 6, 488-496(2012).

    [96] Lei T, Zhang M, Li Y R et al. Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings[J]. Light: Science & Applications, 4, e257(2015).

    [97] Rodenburg B. Lavery M P J, Malik M, et al. Influence of atmospheric turbulence on states of light carrying orbital angular momentum[J]. Optics Letters, 37, 3735-3737(2012).

    [98] Yu S Y. Potentials and challenges of using orbital angular momentum communications in optical interconnects[J]. Optics Express, 23, 3075-3087(2015).

    [99] Hu Z A, Huang Y Q, Luo A P et al. Photonic crystal fiber for supporting 26 orbital angular momentum modes[J]. Optics Express, 24, 17285-17291(2016).

    [100] Nandam A, Shin W. Spiral photonic crystal fiber structure for supporting orbital angular momentum modes[J]. Optik, 169, 361-367(2018).

    [101] Zhang H, Zhang X G, Li H et al. A design strategy of the circular photonic crystal fiber supporting good quality orbital angular momentum mode transmission[J]. Optics Communications, 397, 59-66(2017).

    [102] Li H, Zhang H, Zhang X G et al. Design tool for circular photonic crystal fibers supporting orbital angular momentum modes[J]. Applied Optics, 57, 2474-2481(2018).

    [103] Kim M, Lee C G, Kim S. Photonic quasicrystal fiber supporting orbital angular momentum modes[J]. Proceedings of SPIE, 10947, 1094704(2019).

    [104] Bai X L, Chen H M, Yang H H. Design of a circular photonic crystal fiber with square air-holes for orbital angular momentum modes transmission[J]. Optik, 158, 1266-1274(2018).

    [105] Zhang L, Zhang K C, Peng J et al. Circular photonic crystal fiber supporting 110 OAM modes[J]. Optics Communications, 429, 189-193(2018).

    [106] Chen C, Zhou G Y, Zhou G et al. A multi-orbital-angular-momentum multi-ring micro-structured fiber with ultra-high-density and low-level crosstalk[J]. Optics Communications, 368, 27-33(2016).

    [107] Chen C. Research of micro-structured fiber supporting few modes and OAM states[D]. Guangzhou: South China Normal University(2016).

    [108] Li H, Ren G, Gao Y et al. Hollow-core photonic bandgap fibers for orbital angular momentum applications[J]. Journal of Optics, 19, 045704(2017).

    [109] Zhang Y F, Chen Y J, Zhong Z Q et al. Orbital angular momentum (OAM) modes routing in a ring fiber based directional coupler[J]. Optics Communications, 350, 160-164(2015).

    [110] Zhong Z Q, Zhang Y F, Chen Y J et al. A numerical study of ring fibre for high capacity orbital angular momentum mode transmission. [C]∥2013 12th International Conference on Optical Communications and Networks (ICOCN), July 26-28, 2013, Chengdu, China. New York: IEEE, 13824788(2013).

    [111] Li S H, Wang J. Multi-orbital-angular-momentum multi-ring fiber for high-density space-division multiplexing[J]. IEEE Photonics Journal, 5, 7101007(2013).

    [112] Smith C M, Venkataraman N, Gallagher M T et al. Low-loss hollow-core silica/air photonic bandgap fibre[J]. Nature, 424, 657-659(2003).

    [113] Mangan B, Farr L, Langford A et al. Low loss (1.7 dB/km) hollow core photonic bandgap fiber. [C]∥Optical Fiber Communication Conference 2004, February 22, 2004, Los Angeles, California, United States. Washington, D.C.: OSA, PD24(2004).

    [114] Roberts P J, Couny F, Sabert H et al. Ultimate low loss of hollow-core photonic crystal fibres[J]. Optics Express, 13, 236-244(2005).

    [115] Benabid F. Russell P S J. Hollow-core photonic crystal fibers: progress and prospects[J]. Proceeding of SPIE, 5733, 176-189(2005).

    [116] Amezcua-Correa R, Gèrôme F. Leon-Saval S G, et al. Control of surface modes in low loss hollow-core photonic bandgap fibers[J]. Optics Express, 16, 1142-1149(2008).

    [117] Sanders G A, Strandjord L K, Qiu T Q. Hollow core fiber optic ring resonator for rotation sensing. [C]∥Optical Fiber Sensors 2006, October 23-27, 2006, Cancun, Mexico. Washington, D.C.: OSA, ME6(2006).

    [118] Terrel M A. Digonnet M J F, Fan S H. Resonant fiber optic gyroscope using an air-core fiber[J]. Journal of Lightwave Technology, 30, 931-937(2012).

    [119] Epple G, Kleinbach K S, Euser T G et al. Rydberg atoms in hollow-core photonic crystal fibres[J]. Nature Communications, 5, 4132(2014).

    [120] Jung Y M, Sleiffer V, Baddela N et al. First demonstration of a broadband 37-cell hollow core photonic bandgap fiber and its application to high capacity mode division multiplexing. [C]∥Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, March 17-21, 2013, Anaheim, CA. Washington, D.C.: OSA, PDP5A, 3(2013).

    [121] Wang Y Y, Wheeler N V, Couny F et al. Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber[J]. Optics Letters, 36, 669-671(2011).

    [122] Pryamikov A D, Biriukov A S, Kosolapov A F et al. Demonstration of a waveguide regime for a silica hollow - core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm[J]. Optics Express, 19, 1441-1448(2011).

    [123] Yu F, Wadsworth W J, Knight J C. Low loss silica hollow core fibers for 3-4 μm spectral region[J]. Optics Express, 20, 11153-11158(2012).

    [124] Liu Y, Zhou G Y, Xia C M et al. The fabrication and properties analysis of octagonal hollow core micro-structured fiber[J]. Applied Laser, 34, 341-345(2014).

    [125] Li B Y, Sheng Z C, Wu M et al. Sensitive real-time monitoring of refractive indices and components using a microstructure optical fiber microfluidic sensor[J]. Optics Letters, 43, 5070-5073(2018).

    [126] Sheng Z C, Wang T, Zhou G Y et al. Raman probe based on hollow-core microstructured fiber[J]. Acta Physica Sinica, 67, 184211(2018).

    [127] Belardi W, Knight J C. Negative curvature fibers with reduced leakage loss. [C]∥Optical Fiber Communication Conference 2014, March 9-13, 2014, San Francisco, California, United States. Washington, D.C.: OSA, Th2A, 45(2014).

    [128] Habib M S, Bang O, Bache M. Low-loss hollow-core silica fibers with adjacent nested anti-resonant tubes[J]. Optics Express, 23, 17394-17406(2015).

    [129] Habib M S, Markos C, Bang O et al. Curvature and position of nested tubes in hollow-core anti-resonant fibers. [C]∥2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), June 25-29, 2017, Munich, Germany. New York: IEEE, 17350440(2017).

    [130] Meng F C, Liu B W, Li Y F et al. Low loss hollow-core antiresonant fiber with nested elliptical cladding elements[J]. IEEE Photonics Journal, 9, 7100211(2017).

    [131] Habib M S, Bang O, Bache M. Low-loss single-mode hollow-core fiber with anisotropic anti-resonant elements[J]. Optics Express, 24, 8429-8436(2016).

    [132] Liu X S, Fan Z W, Shi Z H et al. Dual-core antiresonant hollow core fibers[J]. Optics Express, 24, 17453-17458(2016).

    [133] Hayes J R, Sandoghchi S R, Bradley T D et al. Antiresonant hollow core fiber with an octave spanning bandwidth for short haul data communications[J]. Journal of Lightwave Technology, 35, 437-442(2017).

    [134] Adamu A I, Habib M S, Petersen C R et al. Supercontinuum generation from deep-UV to mid-IR in a noble gas-filled fiber pumped with ultrashort mid-IR pulses. [C]∥Optical Sensors 2018, July 2-5, 2018, Zurich Switzerland. Washington, D.C.: OSA, JTu6E, 2(2018).

    [135] Yu T Y, Liu X S, Fan Z W. Hollow core antiresonant fiber with radially asymmetric nodeless claddings[J]. IEEE Photonics Journal, 10, 7100908(2018).

    [136] Hao Y, Xiao L M, Benabid F. Optimized design of unsymmetrical gap nodeless hollow core fibers for optofluidic applications[J]. Journal of Lightwave Technology, 36, 3162-3168(2018).

    [137] Gao S F, Wang Y Y, Ding W et al. Hollow-core conjoined-tube negative-curvature fibre with ultralow loss[J]. Nature Communications, 9, 2828(2018).

    [138] Xia C M, Sheng Z C, Fan H X et al. Hollow core fibers for optical pumped fiber gas laser. [C]∥Conference on Lasers and Electro-Optics/Pacific Rim 2018, July 29-August 3, 2018, Hong Kong, China. Washington, D.C.: OSA, Tu2E, 3(2018).

    [139] 5G networks[N/OL]. -09-26)[2019-04-15]. Laser focus world. Low-attenuation hollow-core fiber could herald more cost effective data centers(2018). https://www.laserfocusworld.com/articles/2018/09/low-attenuation-hollow-core-fiber-could-herald-more-cost-effective-data-centers-and-5g-networks.html.

    [140] Lee E, Luo J, Sun B et al. 45 W 2 μm nanosecond pulse delivery using antiresonant hollow-core fiber. [C]∥CLEO: Science and Innovations 2018, May 13-18, 2018, San Joe, California. Washington, D.C.: OSA, SF1K, 1(2018).

    [141] Tu J J, Zhang B, Liu Z Y et al. Chalcogenide-glass nested anti-resonant nodeless fibers in mid-infrared region[J]. Journal of Lightwave Technology, 36, 5244-5253(2018).

    [142] Wei C L, Menyuk C R, Hu J. Polarization-filtering and polarization-maintaining low-loss negative curvature fibers[J]. Optics Express, 26, 9528-9540(2018).

    [143] Yan S B, Lou S Q, Zhang W et al. Single-polarization single-mode double-ring hollow-core anti-resonant fiber[J]. Optics Express, 26, 31160-31171(2018).

    [144] Wei C L, Joseph Weiblen R, Menyuk C R et al. Negative curvature fibers[J]. Advances in Optics and Photonics, 9, 504-561(2017).

    [145] Michieletto M, Lyngsø J K, Jakobsen C et al. Hollow-core fibers for high power pulse delivery[J]. Optics Express, 24, 7103-7119(2016).

    [146] Selim Habib M, Markos C, Bang O et al. Soliton-plasma nonlinear dynamics in mid-IR gas-filled hollow-core fibers[J]. Optics Letters, 42, 2232-2235(2017).

    [147] Xu M, Yu F, Knight J. Mid-infrared 1 W hollow-core fiber gas laser source[J]. Optics Letters, 42, 4055-4058(2017).

    [148] Aghbolagh F B A, Nampoothiri V, Debord B et al. . Mid IR hollow core fiber gas laser emitting at 4.6 μm[J]. Optics Letters, 44, 383-386(2019).

    [149] Guo Y Y, Yan F P, Liu S et al. Characteristics investigation of high birefringent micro-structured optical fiber filled with magnetic fluid at 2 μm band[J]. Chinese Journal of Lasers, 45, 0406003(2018).

    [150] Qiao W, Gao S C, Lei T et al. Transmission of orbital angular momentum modes in grapefruit-type microstructure fiber[J]. Chinese Journal of Lasers, 44, 0406002(2017).

    [151] Zhang Z, Wang X H, Qiao P F et al. High sensitivity fluorescence detection system based on air suspended core microstructural fiber[J]. Chinese Journal of Lasers, 45, 0510006(2018).

    [152] Chen Y B, Wang Z F, Gu B et al. 1.5 μm fiber ethane gas Raman laser amplifier[J]. Acta Optica Sinica, 37, 0514002(2017).

    [153] Gao S F, Wang Y Y, Wang P. Research progress on hollow-core anti-resonant fiber and gas Raman laser technology[J]. Chinese Journal of Lasers, 46, 0508014(2019).

    [154] Zeng W, Shu L, Li Q et al. Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications[J]. Advanced Materials, 26, 5310-5336(2014).

    Changming Xia, Guiyao Zhou. Progress and Prospect of Microstructured Optical Fibers[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170603
    Download Citation