• Acta Optica Sinica
  • Vol. 36, Issue 12, 1205001 (2016)
Deng Qian1、2, Zhao Lixin1, Tang Yan1, Yao Jingwei1、2, Liu Junbo1、2、*, and Hu Song1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/aos201636.1205001 Cite this Article Set citation alerts
    Deng Qian, Zhao Lixin, Tang Yan, Yao Jingwei, Liu Junbo, Hu Song. Simulation Analysis on Influencing Factors of Fringe Quality by Displacement Talbot Lithography[J]. Acta Optica Sinica, 2016, 36(12): 1205001 Copy Citation Text show less
    References

    [1] Zhou Changhe. Micro- & nano- optical structures and applications[J]. Laser & Optoelectronics Progress, 2009, 46(10): 22-27.

    [2] Zhuang Jie, Zhang Dawei, Tao Chunxian, et al. A generalization of the application about optical micro-nano structure on LEDs[J]. Optical Technique, 2012, 38(1): 98-103.

    [3] Wang Jinguang, Li Ming, Liu Jianfeng, et al. The applications of microfluidic in medical detection[J]. Modern Scientific Instruments, 2007, 17(6): 60-63.

    [4] Jin Yonglong, Zhang Yu, Gu Ning. Fabrication of microchip with embedded optical fibers by excimer laser processing technique[J]. Chinese J Lasers, 2008, 35(11): 1821-1824.

    [5] Yang Lianchen, Li Guohua, Song Lianke, et al. Design of polarizing devices based on the binary-grating diffraction[J]. Acta Photonica Sinica, 1998, 27(9): 833-837.

    [6] Sun Qing. Study on high-speed fiber Bragg grating demodulation system based on diffraction grating[D]. Beijing: Beijing Institute of Technology, 2015.

    [7] Xie Changqing, Zhu Xiaoli, Niu Jiebin, et al. Micro- and nano-metal structures fabrication technology and applications[J]. Acta Optica Sinica, 2011, 31(9): 0900128.

    [8] Yao Hanming, Hu Song, Xing Tingwen. Optical projection exposure technology of micro and nano fabrication[M]. Bejing: Beijing University of Technology Press, 2006.

    [9] Zhang Jin. Study on laser interferometric lithography[D]. Chengdu: Sichuan University, 2003.

    [10] Ding Yucheng. Research progress of nanoimprint lithography and its technical challenges[J]. Journal of Qingdao Technological University, 2010, 31(1): 9-15.

    [11] Lü Naiguang. Fourier optics [M]. Beijing: China Machine Press, 2006: 90-93.

    [12] Zhang Wei. Talbot effect of grating and its application in wave-front sensing[D]. Jinan: Shandong Normal University, 2015.

    [13] Teng Shuyun, Liu Liren, Zu Jifeng, et al. Equivalence of Talbot effect of the grating illuminated by the pulsed laser and continuous polychromatic light[J]. Chinese J Lasers, 2004, 31(10): 1177-1182.

    [14] Wang Junhong. Study about fractal grating and its self-image effect[D]. Jinan: Shandong Normal University, 2015.

    [15] Zhang Baohao, Zhou Sumei, Yang Xiaoming, et al. Talbot effect of square-aperture microlens array[J]. Acta Optica Sinica, 2016, 36(5): 0523001.

    [16] Qu Weijuan, Yan Aimin, Liu Liren, et al. Fractional Talbot effect of 2D skewed periodic array[J]. Chinese J Lasers, 2006, 33(3): 356-360.

    [17] Tan Qiaofeng, Zhang Yan, Jin Guofan. High-efficiency spatial color separation method based on fractional Talbot effect[J]. Chinese Optics Letters, 2009, 7(11): 975-977.

    [18] Isoyan A, Jiang F, Cheng Y C, et al. Talbot lithography: self-imaging of complex structures[J]. J Vac Sci Technol B, 2009, 27(6): 2931-2937.

    [19] Dunbar L A, Nguyen D, Timotijevic B, et al. Talbot lithography as an alternative for contact lithography for submicron features[C]. SPIE, 2014, 8974: 89740F.

    [20] Dammann H, Groh G, Kock M. Restoration of faulty images of periodic objects by means of self-imaging[J]. Applied Optics, 1971, 10(6): 1454-1455.

    [21] Stuerzebecher L, Fuchs F, Zeitner U D, et al. High-resolution proximity lithography for nano-optical components[J]. Microelectronic Engineering, 2014, 132: 120-134.

    [22] Sato T, Yamada A, Suto T, et al. Printability of defectsin Talbot lithography[J]. Microelectronic Engineering, 2015, 143: 21-24.

    [23] Zanke C, Qi M H, Smith H I. Large-area patterning for photonic crystals via coherent diffraction lithography[J]. J Vac Sci Technol B, 2004, 22(6): 3352-3355.

    [24] Solak H H, Ekinci Y. Achromatic spatial frequency multiplication: a method for production of nanometer-scale periodic structures[J]. J Vac Sci Technol B, 2005, 23(6): 2705-2710.

    [25] Solak H H, Dais C, Clube F. Displacement TalbotLithography: a new method for high-resolution patterning of large areas[J]. Optics Express, 2011, 19(19): 10686-10691.

    [26] Solak H H, Dais C, Clube F, et al. Phase shifting masks in Displacement Talbot Lithography for printing nano-grids and periodic motifs[J]. Microelectronic Engineering, 2015, 143: 74-80.

    [27] Wang L, Clube F, Dais C, et al. Sub-wavelength printing in the deep ultra-violet region using Displacement Talbot Lithography[J]. Microelectronic Engineering, 2016, 161: 104-108.

    CLP Journals

    [1] Lei Jian, Wang Ying, Chen Peifeng. Matrix Calculation Based on Coupling Effect of Inhomogeneous Media in Resonant Cavities[J]. Chinese Journal of Lasers, 2017, 44(11): 1101001

    Deng Qian, Zhao Lixin, Tang Yan, Yao Jingwei, Liu Junbo, Hu Song. Simulation Analysis on Influencing Factors of Fringe Quality by Displacement Talbot Lithography[J]. Acta Optica Sinica, 2016, 36(12): 1205001
    Download Citation