• High Power Laser Science and Engineering
  • Vol. 7, Issue 3, 03000e48 (2019)
Xue Dong1、2, Xingchen Pan1, Cheng Liu1、†, and Jianqiang Zhu1
Author Affiliations
  • 1Joint Laboratory on High-Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.1017/hpl.2019.26 Cite this Article Set citation alerts
    Xue Dong, Xingchen Pan, Cheng Liu, Jianqiang Zhu. An online diagnosis technique for simultaneous measurement of the fundamental, second and third harmonics in one snapshot[J]. High Power Laser Science and Engineering, 2019, 7(3): 03000e48 Copy Citation Text show less

    Abstract

    A three-wavelength coherent-modulation-imaging (CMI) technique is proposed to simultaneously measure the fundamental, second and third harmonics of a laser driver in one snapshot. Laser beams at three wavelengths (1053 nm, 526.5 nm and 351 nm) were simultaneously incident on a random phase plate to generate hybrid diffraction patterns, and a modified CMI algorithm was adopted to reconstruct the complex amplitude of each wavelength from one diffraction intensity frame. The validity of this proposed technique was verified using both numerical simulation and experimental analyses. Compared to commonly used measurement methods, this proposed method has several advantages, including a compact structure, convenient operation and high accuracy.
    $$\begin{eqnarray}\text{Error}_{n}=\frac{\mathop{\sum }_{u}\left|\mathop{\sum }_{k=1}^{3}|E_{k,n}(r_{D})|^{2}-I\right|^{2}}{\mathop{\sum }_{u}I^{2}},\end{eqnarray}$$(1)

    View in Article

    $$\begin{eqnarray}\hat{E}_{k,n}(r_{D})=\frac{\sqrt{I}E_{k,n}(r_{D})}{\sqrt{\mathop{\sum }_{k=1}^{K}|E_{k,n}(r_{D})|^{2}}}.\end{eqnarray}$$(2)

    View in Article

    $$\begin{eqnarray}\hat{E}_{k,n}^{\prime }(r_{D})=\left\{\begin{array}{@{}l@{}}E_{k,n}(r_{D}),\quad r_{D}\in S,\\ \hat{E}_{k,n}(r_{D}),\quad r_{D}\notin S.\\ \end{array}\right.\end{eqnarray}$$(3)

    View in Article

    $$\begin{eqnarray}\hat{E}_{k,n}(r_{m})=E_{k,n}(r_{M})+\unicode[STIX]{x1D6FC}\frac{T_{k}^{\ast }}{|T_{k}|_{\text{max}}^{2}}[\hat{E}_{k,n}(r_{M})-E_{k,n}(r_{M})],\end{eqnarray}$$(4)

    View in Article

    $$\begin{eqnarray}\displaystyle \hat{E}_{k,n}^{\prime }(r_{S}) & = & \displaystyle H_{D(k,n)}\hat{E}_{k,n}(r_{S})\nonumber\\ \displaystyle & & \displaystyle +\,\unicode[STIX]{x1D6FE}(1-H_{D(k,n)})[\hat{E}_{k,n}(r_{S})-E_{k,n}(r_{S})].\qquad\end{eqnarray}$$(5)

    View in Article

    $$\begin{eqnarray}\text{Error}_{k,n}=\frac{\mathop{\sum }_{u}||E_{k,n}(r_{D})|^{2}-I_{k}|^{2}}{\mathop{\sum }_{u}I_{k}^{2}}.\end{eqnarray}$$(6)

    View in Article

    Xue Dong, Xingchen Pan, Cheng Liu, Jianqiang Zhu. An online diagnosis technique for simultaneous measurement of the fundamental, second and third harmonics in one snapshot[J]. High Power Laser Science and Engineering, 2019, 7(3): 03000e48
    Download Citation