• Infrared and Laser Engineering
  • Vol. 49, Issue 9, 20201040 (2020)
Weiwei Fu and Kun Huang*
Author Affiliations
  • Department of Optics and Optical Engineering, School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
  • show less
    DOI: 10.3788/IRLA20201040 Cite this Article
    Weiwei Fu, Kun Huang. All-optical image processing technology and applications based on micro-/nano-devices[J]. Infrared and Laser Engineering, 2020, 49(9): 20201040 Copy Citation Text show less

    Abstract

    The rapid development of nanotechnology has promoted the processing and manufacturing of micro-nano structures, scientific research and industrial applications. The investigation on optical properties of micro-nano structures has recently been one of the hotspots in the field of optics, which has driven emerging disciplines such as nanophotonics, surface plasmonic optics, metasurface/metamaterial optics, topological photonics, and non-Hermitian optics. It provides the important technical fundamentals for full control of light with high precision. This article focused on the edge detection in all-optical image processing. The fundamentals, principles, technologies and applications of micro-/nano-scale structures and devices were discussed to realize optical mathematical computing (such as differential, convolution), followed by a detailed prospect about its future applications in ultrafast image processing, high-contrast microscopic imaging, convolutional neural networks and intelligent optics.
    $ \varepsilon \left(y\right)={\varepsilon }_{c}\left[1-{\left(\dfrac{\pi }{2{L}_{g}}\right)}^{2}{y}^{2}\right] $(1)

    View in Article

    $\frac{{{\varepsilon _{ms}}\left( y \right)}}{{{\varepsilon _0}}} = \dfrac{{{\mu _{ms}}}}{{{\mu _0}}} = {{i}}\left( {\dfrac{{{\lambda _0}}}{{2\pi \Delta }}} \right)\ln \left( {\dfrac{{ - iW}}{{2y}}} \right) $(2)

    View in Article

    $\frac{{{\varepsilon _{ms}}\left( y \right)}}{{{\varepsilon _0}}} = \dfrac{{{\mu _{ms}}}}{{{\mu _0}}} = {{i}}2\left( {\dfrac{{{\lambda _0}}}{{2\pi \Delta }}} \right)\ln \left( {\dfrac{{ - iW}}{{2y}}} \right)$(3)

    View in Article

    $ {S}_{{\rm{out}}}\left(x\right)=\frac{{{\rm{e}}}^{i\varphi }}{B}\frac{{\rm{d}}{S}_{{\rm{in}}}}{{\rm{d}}x}。$(4)

    View in Article

    $ \begin{split} {{t}}\left({k}_{x},{k}_{y}\right)=&\left(\begin{array}{c}{t}_{ss}\left({k}_{x},{k}_{y}\right){t}_{sp}\left({k}_{x},{k}_{y}\right)\\ {t}_{ps}\left({k}_{x},{k}_{y}\right){t}_{pp}\left({k}_{x},{k}_{y}\right)\end{array}\right)=\\ &\left(\begin{array}{cc}{\alpha }_{ss}\left({k}_{x},{k}_{y}\right)& 0\\ 0& {\alpha }_{pp}\left({k}_{x},{k}_{y}\right)\end{array}\right) \end{split} $ (5)

    View in Article

    $ t\left({w}_{0},{{k}}\right)=-\dfrac{i}{{\gamma }_{0}}\delta w\left({{k}}\right) $(6)

    View in Article

    $ \left|{t}_{u}\right|=\sqrt{\dfrac{{\left|{t}_{ss}\right|}^{2}+{\left|{t}_{pp}\right|}^{2}}{2}} $(7)

    View in Article

    $ \begin{split} E\left(x,y\right)=&O\left(x,y\right)\otimes {\cal{F}}\left\{{{{{{{\rm{e}}}}}}}^{i\varphi }\right\}=O\left(x,y\right)\otimes i\dfrac{{{\rm{e}}}^{i\varphi }}{2\pi {r}^{2}} \\ & \displaystyle\iint {\rm{d}}\bar{x}{\rm{d}}\bar{y}O\left(x-\bar{x},y-\bar{y}\right)i\dfrac{{{\rm{e}}}^{i\bar{\varphi }}}{2\pi {\bar{r}}^{2}} \end{split} $ (8)

    View in Article

    $ {E}_{{\rm{out}}}\propto {{\rm{e}}}^{i{\psi }_{{\rm{in}}}}{g}_{{\rm{am}}}{{\rm{e}}}^{i{\delta }_{{\rm{am}}}}+i{E}_{{\rm{in}}}{g}_{{\rm{ph}}}{{\rm{e}}}^{i{\delta }_{{\rm{ph}}}} $ (9)

    View in Article

    $ \begin{array}{l} {{g}}_{{\rm{am}}}=\overrightarrow{\nabla }\left|{E}_{{\rm{in}}}\right|={g}_{{\rm{am}}}{{\rm{{\rm{e}}}}}^{i{\delta }_{{\rm{am}}}}{{{\rm{e}}}}_{{\rm{am}}}\\ {{g}}_{{\rm{ph}}}=\overrightarrow{\nabla }\left|{\psi }_{{\rm{in}}}\right|={g}_{{\rm{ph}}}{{\rm{{\rm{e}}}}}^{i{\delta }_{{\rm{ph}}}}{{{\rm{e}}}}_{{\rm{ph}}} \end{array} $ (10)

    View in Article

    $ {I}_{j}=\left|U\left(x,y\right)-{{{\rm{e}}}}^{i{\phi }_{j}}U\left(x,y-\Delta y\right)\right| $(11)

    View in Article

    $ {\nabla }_{y}\phi =\dfrac{1}{\Delta y}\arctan\left(\sqrt{3}\dfrac{{I}_{2}-{I}_{3}}{2{I}_{1}-{I}_{2}-{I}_{3}}\right)-{\nabla }_{y}{\phi }_{{\rm{cali}}} $(12)

    View in Article

    $ \begin{split} {E}_{{\rm{out}}}\left(x,y\right)=&{E}_{{\rm{in}}}\left[\left(x-\Delta \right),y\right]\left[\begin{array}{c}1\\ -i\end{array}\right]+\\ &{E}_{{\rm{in}}}\left[\left(x+\Delta \right),y\right]\left[\begin{array}{c}1\\ i\end{array}\right] \end{split} $ (13)

    View in Article

    $ \begin{split} {E}_{{\rm{out}}\_{\rm{edge}}}\left(x,y\right)=&({E}_{{\rm{in}}}\left[\left(x+\Delta \right),y\right] -\\ &{E}_{{\rm{in}}}\left[\left(x-\Delta \right),y\right])\left[\begin{array}{c}0\\ i\end{array}\right] \end{split} $ (14)

    View in Article

    $ \left|\begin{array}{c}{E}_{{{\rm{out}}}_{{\rm{edge}}}}\left({x,y}\right)\end{array}\right|\simeq2\Delta \dfrac{d{E}_{{\rm{in}}}(x,y)}{d\left(x\right)}$()

    View in Article

    $ \begin{split} \left| {{\varphi _{{\rm{out}}}}} \right\rangle =& \left\langle v \right|\hat U\left| {{\varphi _{{\rm{in}}}}} \right\rangle \left. u \right\rangle = \dfrac{i}{2} \int {\rm{d}}{k_y}{{\tilde \varphi }_{{\rm{in}}}}\left( {{k_y}} \right) \times\\ &\left[ {{\rm{exp}}\left( {i{k_y}\delta } \right) - {\rm{exp}} \left( { - i{k_y}\delta } \right)} \right]\left| {{k_y}} \right\rangle =\\ &\dfrac{i}{2}\int {\rm{d}}y\left[ {{\varphi _{{\rm{in}}}}\left( {y + \delta } \right) - {\varphi _{{\rm{in}}}}\left( {y - \delta } \right)} \right]\left| y \right\rangle \end{split} $ (16)

    View in Article

    $ \begin{split} E_{x\left( y \right)}^{{\rm{in}}\left( {{\rm{out}}} \right)} =& \displaystyle\iint \tilde E_{x\left( y \right)}^{{\rm{in}}\left( {{\rm{out}}} \right)}\left( {{k_x},{k_y}} \right){\rm{exp}}\left( {i{k_x}x} \right)\times\\ &{\rm{exp}}\left( {i{k_y}y} \right){\rm{d}}{k_x}{\rm{d}}{k_y} \end{split} $ (17)

    View in Article

    $ H=\dfrac{i\left({r}_{s}+{r}_{p}\right)}{4}({{\rm{e}}}^{i{k}_{y}\delta }+{{\rm{e}}}^{-i{k}_{y}\delta }) $ (18)

    View in Article

    $ H\simeq -\dfrac{\delta \left({r}_{s}+{r}_{p}\right)}{2}{k}_{y} $(19)

    View in Article

    Weiwei Fu, Kun Huang. All-optical image processing technology and applications based on micro-/nano-devices[J]. Infrared and Laser Engineering, 2020, 49(9): 20201040
    Download Citation