• Journal of Semiconductors
  • Vol. 44, Issue 1, 011903 (2023)
Yuchen Gao1 and Yu Ye1、2、3、*
Author Affiliations
  • 1State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
  • 2Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
  • 3Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, China
  • show less
    DOI: 10.1088/1674-4926/44/1/011903 Cite this Article
    Yuchen Gao, Yu Ye. Interaction of moiré excitons with cavity photons in two-dimensional semiconductor hetero-bilayers[J]. Journal of Semiconductors, 2023, 44(1): 011903 Copy Citation Text show less
    References

    [1] Y Tang, L Li, T Li et al. Simulation of Hubbard model physicals in WSe2/WS2 moiré superlattices. Nature, 579, 353(2020).

    [2] C Jinn, Z Tao, T Li et al. Stripe phases in WSe2/WS2 moiré superlattices. Nat Mater, 20, 940(2021).

    [3] D M Kennes, M Classen, L Xian et al. Moiré heterostructures as a condensed-matter quantum simulator. Nat Phys, 17, 155(2021).

    [4] T Li, S Jiang, B Shen et al. Quantum anomalous Hall effect from intertwined moiré bands. Nature, 600, 641(2021).

    [5] T Iwasaki, K Endo, E Watanabe et al. Bubble-free transfer technique for high-quality graphene/hexagonal boron nitride van der Waals heterostructures. ACS Appl Mater Interfaces, 12, 8533(2020).

    [6] K F Mak, J Shan. Semiconductor moiré materials. Nat Nanotechnol, 17, 686(2022).

    [7] J Choi, W T Hsu, L S Lu et al. Moiré potential impedes interlayer exciton diffusion in van der Waals heterostructures. Sci Adv, 6, eaba8866(2020).

    [8] K L Seyler, P Rivera, H Yu et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature, 567, 66(2019).

    [9] B Padhi, R Chitra, P W Phillips. Generalized Wigner crystallization in moiré materials. Phys Rev B, 103, 125146(2021).

    [10] E C Regan, D Wang, C Jin et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature, 579, 359(2020).

    [11] T Yan, X Qiao, X Liu et al. Photoluminescence properties and exciton dynamics in monolayer WSe2. Appl Phys Lett, 105, 101901(2014).

    [12] P Rivera, J R Schaibley, A M Jones et al. Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures. Nat Commun, 6, 6242(2015).

    [13] S Gao, L Yang, C D Spataru. Interlayer coupling and gate-tunable excitons in transition metal dichalcogenide heterostructures. Nano Lett, 17, 7809(2017).

    [14] W Li, X Lu, S Dubey et al. Dipolar interactions between localized interlayer excitons in van der Waals heterostructures. Nat Mater, 19, 624(2020).

    [15] H Deng, H Haug, Y Yamamoto. Exciton–polariton Bose-Einstein condensation. Rev Mod Phys, 82, 1489(2010).

    [16] A Amo, J Lefrère, S Pigeon et al. Superfluidity of polaritons in semiconductor microcavities. Nat Phys, 5, 805(2009).

    [17] M D Fraser, S Höfling, Y Yamamoto. Physics and applications of exciton–polariton lasers. Nat Mater, 15, 1049(2016).

    [18] S Latini, E Ronca, U D Giovannini et al. Cavity control of excitons in two-dimensional materials. Nano Lett, 19, 3473(2019).

    [19] M Förg, L Colombier, R K Patel et al. Cavity-control of interlayer excitons in van der Waals heterostructures. Nat Commun, 10, 3697(2019).

    [20] L Zhang, F Wu, S Hou et al. Van der Waals heterostructure polaritons with moiré-induced nonlinearity. Nature, 591, 61(2021).

    [21] N P Wilson, W Yao, J Shan et al. Exciton and emergent quantum phenomena in stacked 2D semiconductors. Nature, 599, 383(2021).

    [22] H Yu, W Yao. Electrically tunable topological transport of moiré polaritons. Sci Bull, 65, 1555(2020).

    [23] A Camacho-Guardian, N R Cooper. Moiré-induced optical nonlinearities: single- and multiphoton resonances. Phys Rev Lett, 128, 207401(2022).

    [24] J M Fizgerald, J J P Thompson, E Malic. Twist angle tuning of moiré exciton polaritons in van der Waals heterostructures. Nano Lett, 22, 4468(2022).

    [25] P Rivera, T K Fryett, Y Chen et al. Coupling of photonic crystal cavity and interlayer exciton in heterobilayer of transition metal dichalcogenides. 2D Mater, 7, 015027(2020).

    [26] E Y Paik, L Zhang, G W Burg et al. Interlayer exciton laser of extended spatial coherence in atomically thin heterostructures. Nature, 576, 80(2019).

    [27] N Ubrig, E Ponomarev, J Zultak et al. Design of van der Waals interfaces for broad-spectrum optoelectronics. Nat Mater, 19, 299(2020).

    [28] D N Shanks, F Mahdikhanysarvejahany, T G Stanfill et al. Interlayer exciton diode and transistor. Nano Lett, 16, 6599(2022).

    [29] M Dusel, S Betzold, O A Egorov et al. Room temperature organic exciton–polariton condensate in a lattice. Nat Commun, 11, 2863(2020).

    [30] V G Sala, D D Solnyshkov, I Carusotto et al. Spin-orbit coupling for photons and polaritons in microstructures. Phys Rev X, 5, 011034(2015).

    [31] C E Whittaker, E Cancellieri, P M Walker et al. Exciton polaritons in a two-dimensional Lieb lattice with spin-orbit coupling. Phys Rev Lett, 120, 097401(2018).

    [32] S Alyatkin, H Sigurdsson, A Askitopoulos et al. Quantum fluids of light in all-optical scatter lattices. Nat Commun, 12, 5571(2021).

    Yuchen Gao, Yu Ye. Interaction of moiré excitons with cavity photons in two-dimensional semiconductor hetero-bilayers[J]. Journal of Semiconductors, 2023, 44(1): 011903
    Download Citation