• Chinese Journal of Lasers
  • Vol. 48, Issue 11, 1103002 (2021)
Qunli Zhang1、2、3, Jian Lin1、2、3, Zhijun Chen1、2、3、*, Zehao Tang1、2、3, Hua Huang1、2、3, Yuan’an Gao4, and Jianhua Yao1、2、3
Author Affiliations
  • 1Institute of Laser Advanced Manufacturing, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
  • 2Zhejiang Provincial Collaborative Innovation Center of High-End Laser Manufacturing Equipment, Hangzhou, Zhejiang 310023, China
  • 3College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
  • 4Luoyang Bearing Research Institute Co., Ltd., Luoyang, Henan 471039, China
  • show less
    DOI: 10.3788/CJL202148.1103002 Cite this Article Set citation alerts
    Qunli Zhang, Jian Lin, Zhijun Chen, Zehao Tang, Hua Huang, Yuan’an Gao, Jianhua Yao. Phase Transformation Process of Electromagnetic Induction Assisted Laser Quenching Based on MSC. Marc Software[J]. Chinese Journal of Lasers, 2021, 48(11): 1103002 Copy Citation Text show less
    References

    [1] Wu Z. Test analysis and research on fatigue life of heavy-duty bearing[J]. Coal Mine Machinery, 41, 57-59(2020).

    [2] Li S F. Development status and development trend of China's wind power equipment industry[J]. Value Engineering, 38, 37-38(2019).

    [3] Zhou Z Q. Fracture failure analysis on pitch bearing of wind turbine[J]. Equipment Manufacturing Technology, 99-103(2019).

    [4] Han Y, Xiao Y, Yu E L et al. Research status and development trend of precision and targeting electromagnetic induction heating technology in iron and steel industry[J]. Iron & Steel, 54, 1-9(2019).

    [5] He L F, Li H P, Gai K et al. Technological parameters optimization and numerical simulation of induction hardening for 55CrMo steel[J]. Transactions of Materials and Heat Treatment, 36, 199-204(2015).

    [6] Liu H Y, Zhang L, Huang X R et al. Laser surface modification technology and its application to bearing[J]. Heat Treatment, 33, 40-43(2018).

    [7] Huang J Y, Shen Z J, Zhang L X et al. Applications of laser surface treatment technologies in petroleum machinery[J]. Laser & Optoelectronics Progress, 56, 060005(2019).

    [8] Liu Q B, Liu H. Experimental study of the laser quenching of 40CrNiMoA steel[J]. Journal of Materials Processing Technology, 88, 77-82(1999). http://www.sciencedirect.com/science/article/pii/S0924013698003811

    [9] Yang Z, Fan X F, Qiu C J et al. Microstructure and properties of 40CrNiMoA steel surface after laser quenching[J]. Laser & Optoelectronics Progress, 57, 011405(2020).

    [10] Li C, Yu Z B, Zhao J Y et al. Numerical simulation and experimental study on laser quenching process of disk laser[J]. Surface Technology, 48, 203-211(2019).

    [11] Zhang Z, Han B, Wang Y et al. Effects of the shape of workpiece on temperature and stress field distribution during laser transformation hardening[J]. Chinese Journal of Lasers, 39, 0803001(2012).

    [12] Li M V, Niebuhr D V, Meekisho L L et al. A computational model for the prediction of steel hardenability[J]. Metallurgical and Materials Transactions B, 29, 661-672(1998). http://link.springer.com/article/10.1007/s11663-998-0101-3

    [13] Mackerle J. Finite element analysis and simulation of quenching and other heat treatment processes: a bibliography (1976—2001)[J]. Computational Materials Science, 27, 313-332(2003). http://www.sciencedirect.com/science/article/pii/S0927025603000387

    [14] Luo X, Chen P F, Wang Y et al. Novel kind of wide-band shaping parabolic mirror for high power laser processing[J]. Chinese Journal of Lasers, 35, 1853-1856(2008).

    [15] He Q, Su H L, Liu H Z et al. Research on 40Cr steel for high-speed spindle laser transformation hardening technics[J]. Chinese Journal of Lasers, 36, 2192-2196(2009).

    [16] Tan W D, Pang M, Jiang G Y et al. Numerical simulation of temperature field in laser phase-transformation hardening of highly-enhanced diesel engine valve seats[J]. Laser & Optoelectronics Progress, 55, 111601(2018).

    [17] Li L. Research of laser-induction hybrid welding processing on S690QL steel[D], 2-10(2019).

    [18] Liang Z Y, Zhang A F, Li L J et al. Induction heating assisted modifier boron refining of TC4 grains by laser cladding deposition[J]. Chinese Journal of Lasers, 45, 0702001(2018).

    [19] Huang K J, Xie C S, Song W L et al. Preparation and application of (nano) powders by Laser-Induction heating[J]. China Powder Industry, 35-39(2008).

    [20] Zhong H L, Wang Z, Gan J et al. Numerical simulation of martensitic transformation plasticity of 42CrMo steel based on spot continual induction hardening model[J]. Surface and Coatings Technology, 385, 125428(2020). http://www.sciencedirect.com/science/article/pii/S0257897220300979

    [21] Zhang Q L, Tong W H, Chen Z J et al. Effect of spot size on geometrical characteristics of laser deep quenching hardened layer of 42CrMo steel[J]. Surface Technology, 49, 254-261(2020).

    [22] He W, Hao G H, Wei Q W et al. Numerical simulation of laser hardening of 42CrMo steel spherical fixed set bearing in roller bit[J]. Heat Treatment of Metals, 40, 149-153(2015).

    [23] Leung M K H, Man H C, Yu J K et al. Theoretical and experimental studies on laser transformation hardening of steel by customized beam[J]. International Journal of Heat and Mass Transfer, 50, 4600-4606(2007). http://www.sciencedirect.com/science/article/pii/S0017931007002451

    [24] Gao Y, Chen W L, Wang L et al. Microstructure transformation in quenching process of 42CrMo heavy commercial vehicle front axle[J]. Journal of Plasticity Engineering, 23, 179-184(2016).

    [25] Reti T, Fried Z, Felde I et al. Computer simulation of steel quenching process using a multi-phase transformation model[J]. Computational Materials Science, 22, 261-278(2001). http://www.sciencedirect.com/science/article/pii/S0927025601002403

    [26] Su H, Ma B, Yi Y H et al. Microstructure and properties of 42CrMo after laser surface melting and quenching[J]. Ordnance Material Science and Engineering, 34, 84-86(2011).

    [27] Zhang Y, Liu R D, Wang K Q et al. Dynamic continuous cooling transformation curves and microstructure evolution of 42CrMo steel[J]. Heat Treatment of Metals, 37, 37-40(2012).

    [28] Liu J, Li M N, Li S H et al. Numerical simulation of heating and quenching process of 42CrMo steel crankshaft[J]. Heat Treatment of Metals, 44, 188-195(2019).

    [29] Lusk M, Jou H J. On the rule of additivity in phase transformation kinetics[J]. Metallurgical and Materials Transactions A, 28, 287-291(1997). http://link.springer.com/article/10.1007/s11661-997-0131-5

    [30] Chen H M, Zhang S H, Wang H G et al. Finite element analysis of temperature field with phase transformation and non-linear surface heat-transfer coefficient during quenching[J]. Applied Mathematics and Mechanics, 19, 3-5(1998).

    [31] Liu Y. Measurements and finite element simulation of quenching stress distribution in medium carbon steels[D], 41-42(2017).

    Qunli Zhang, Jian Lin, Zhijun Chen, Zehao Tang, Hua Huang, Yuan’an Gao, Jianhua Yao. Phase Transformation Process of Electromagnetic Induction Assisted Laser Quenching Based on MSC. Marc Software[J]. Chinese Journal of Lasers, 2021, 48(11): 1103002
    Download Citation