• Acta Optica Sinica
  • Vol. 43, Issue 6, 0601003 (2023)
Haoran Gu1、2, Zhengqiang Li2、3、*, Weizhen Hou2、3、**, Zhenhai Liu4, Lili Qie2, Yinna Li2、3, Yang Zheng2, Zheng Shi2、3, Hua Xu2、3, Jin Hong4, Jinji Ma1, and Zhenting Chen5
Author Affiliations
  • 1School of Geography and Tourism, Anhui Normal University, Wuhu 241000, Anhui, China
  • 2State Environmental Protection Key Laboratory of Satellite Remote Sensing, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China
  • 3University of Chinese Academy of Sciences, Beijing 100049, China
  • 4Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
  • 5School of Information Engineering, Kunming University, Kunming 650214, Yunnan, China
  • show less
    DOI: 10.3788/AOS221036 Cite this Article Set citation alerts
    Haoran Gu, Zhengqiang Li, Weizhen Hou, Zhenhai Liu, Lili Qie, Yinna Li, Yang Zheng, Zheng Shi, Hua Xu, Jin Hong, Jinji Ma, Zhenting Chen. Information Content Analysis on Passive Remote Sensing Imaging Retrieval of Aerosol Layer Height Based on Spaceborne Polarization Crossfire[J]. Acta Optica Sinica, 2023, 43(6): 0601003 Copy Citation Text show less
    Flowchart of information content analysis
    Fig. 1. Flowchart of information content analysis
    PSOP observation geometry used in research. (a) Observation geometry; (b) scattering angle distribution
    Fig. 2. PSOP observation geometry used in research. (a) Observation geometry; (b) scattering angle distribution
    Aerosol volume size distribution
    Fig. 3. Aerosol volume size distribution
    Scattering phase function and polarized scattering phase function varying with scattering angle. (a)(b) Scattering phase function; (c)(d) polarized scattering phase function
    Fig. 4. Scattering phase function and polarized scattering phase function varying with scattering angle. (a)(b) Scattering phase function; (c)(d) polarized scattering phase function
    Surface simulation results varying with observation geometry angle. (a) BRDF; (b) BPDF
    Fig. 5. Surface simulation results varying with observation geometry angle. (a) BRDF; (b) BPDF
    Simulation result varying with observation geometry angle. (a) Apparent reflectivity ; (b) apparent polarized reflectivity
    Fig. 6. Simulation result varying with observation geometry angle. (a) Apparent reflectivity ; (b) apparent polarized reflectivity
    Jacobian result varying with observation geometry angle. (a) ∂I∂V0f; (b) ∂I∂H; (c) ∂DOLP∂V0f; (d) ∂DOLP∂H
    Fig. 7. Jacobian result varying with observation geometry angle. (a) IV0f; (b) IH; (c) DOLPV0f; (d) DOLPH
    Jacobian result of vegetation surface intensity observation varying with H under different observation geometries. (a) Fine-dominated AOD of 0.8; (b) coarse-dominated AOD of 0.8; (c) fine-dominated AOD of 0.2; (d) coarse-dominated AOD of 0.2
    Fig. 8. Jacobian result of vegetation surface intensity observation varying with H under different observation geometries. (a) Fine-dominated AOD of 0.8; (b) coarse-dominated AOD of 0.8; (c) fine-dominated AOD of 0.2; (d) coarse-dominated AOD of 0.2
    Jacobi simulation results under different aerosol and vegetation surface conditions. (a) (c) Different aerosol conditions; (b)(d) different surface conditions
    Fig. 9. Jacobi simulation results under different aerosol and vegetation surface conditions. (a) (c) Different aerosol conditions; (b)(d) different surface conditions
    Analysis of information content results under different surface conditions. (a) Vegetation; (b) bare soil
    Fig. 10. Analysis of information content results under different surface conditions. (a) Vegetation; (b) bare soil
    ALH information under different scenarios. (a) Fine-dominated; (b) coarse-dominated
    Fig. 11. ALH information under different scenarios. (a) Fine-dominated; (b) coarse-dominated
    Posterior error varying with aerosol model parameters at 380 nm band. (a)(b) Posterior error; (c)(d) reduction value of posterior error
    Fig. 12. Posterior error varying with aerosol model parameters at 380 nm band. (a)(b) Posterior error; (c)(d) reduction value of posterior error
    Effect of adding 380 nm wave band polarization measurement on posterior error. (a)(b) Adding 380 nm wave band pure intensity measurement; (c)(d) adding 380 nm wave band intensity and polarization measurements; (e)(f) difference of posterior error reduction between two observation schemes
    Fig. 13. Effect of adding 380 nm wave band polarization measurement on posterior error. (a)(b) Adding 380 nm wave band pure intensity measurement; (c)(d) adding 380 nm wave band intensity and polarization measurements; (e)(f) difference of posterior error reduction between two observation schemes
    Effect of adding 410 nm measurement on posterior error. (a)(b) Adding 410 nm band intensity measurement; (c)(d) adding 410 nm band intensity and polarization measurements
    Fig. 14. Effect of adding 410 nm measurement on posterior error. (a)(b) Adding 410 nm band intensity measurement; (c)(d) adding 410 nm band intensity and polarization measurements
    Equipment parameterDPCPOSP
    Central wavelength443 nm,490 nm,565 nm,670 nm,763 nm,765 nm,865 nm,910 nm380 nm,410 nm,443 nm,490 nm,670 nm,865 nm,1380 nm,1610 nm,2250 nm
    Elements of Stokes vectorIQUIQU
    Instrument FOV(±50°)×(±50°)-50°-50°
    Polarization calculation error0.0200.005
    Radiance calculation error5%5%(VNIR),6%(SWIR)
    Number of viewing angles151
    Table 1. Basic parameters of sensors
    Scenariomr(550 nm)mi(550 nm)reff /μmveffFMFV
    Fine-dominated0.5490.0030.210.50360.8
    Coarse-dominated1.4340.0111.900.19150.2
    Table 2. Aerosol model parameters
    Surface typefisoλk1k2CINDV
    Vegetation0.0186(380 nm),0.0190(410 nm)0.1580.5476.570.62
    Bare soil0.0293(380 nm),0.0313(410 nm)0.0870.6686.900.03
    Table 3. Surface model parameters
    Observabley1y2y3y4
    y1(radiance at 380 nm)1.000.990.270.23
    y2(radiance at 410 nm)0.99(c11.000.230.18
    y3(polarization at 380 nm)0.27(c20.23(c41.000.99
    y4(polarization at 410 nm)0.23(c30.18(c50.99(c61.00
    Table 4. POSP observable correlation in 380 nm and 410 nm
    Scheme380-nm radiance380-nm polarization410-nm radiance410-nm polarization
    A-I×××
    A-IP××
    V-I×××
    V-IP××
    AV-I××
    AV-IP
    Table 5. Numerical simulation schemes
    Surface typeAerosol scenarioA-IAV-IP
    Bare soilFine-dominated0.600.81
    Coarse-dominated0.450.79
    VegetationFine-dominated0.710.83
    Coarse-dominated0.600.80
    Table 6. DFS of H at A-I and AV-IP schemes
    Haoran Gu, Zhengqiang Li, Weizhen Hou, Zhenhai Liu, Lili Qie, Yinna Li, Yang Zheng, Zheng Shi, Hua Xu, Jin Hong, Jinji Ma, Zhenting Chen. Information Content Analysis on Passive Remote Sensing Imaging Retrieval of Aerosol Layer Height Based on Spaceborne Polarization Crossfire[J]. Acta Optica Sinica, 2023, 43(6): 0601003
    Download Citation