• Advanced Photonics Nexus
  • Vol. 2, Issue 1, 015001 (2023)
Shuwen Xue1、†, Yali Zeng, Sicen Tao, Tao Hou, Shan Zhu, Chuanjie Hu, and Huanyang Chen*
Author Affiliations
  • Xiamen University, Institute of Electromagnetics and Acoustics, College of Physical Science and Technology, Department of Physics, Xiamen, China
  • show less
    DOI: 10.1117/1.APN.2.1.015001 Cite this Article Set citation alerts
    Shuwen Xue, Yali Zeng, Sicen Tao, Tao Hou, Shan Zhu, Chuanjie Hu, Huanyang Chen. Vortex-induced quasi-shear polaritons[J]. Advanced Photonics Nexus, 2023, 2(1): 015001 Copy Citation Text show less
    References

    [1] H. Raether. Surface plasmons on smooth surfaces. Surface Plasmons on Smooth and Rough Surfaces and on Gratings, 4-39(1988).

    [2] S. A. Maier. Surface plasmon polaritons at metal/insulator interfaces. Plasmonics: Fundamentals and Applications, 21-37(2007).

    [3] D. K. Gramotnev, S. I. Bozhevolnyi. Plasmonics beyond the diffraction limit. Nat. Photonics, 4, 83-91(2010).

    [4] H. A. Atwater, A. Polman. Plasmonics for improved photovoltaic devices. Nat. Mater., 9, 205-213(2010).

    [5] Q. Zhang et al. Interface nano-optics with van der Waals polaritons. Nature, 597, 187(2021).

    [6] D. Lee et al. Hyperbolic metamaterials: fusing artificial structures to natural 2D materials. eLight, 2, 1(2022).

    [7] S. Dai et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science, 343, 1125-1129(2014).

    [8] J. D. Caldwell et al. Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride. Nat. Commun., 5, 1-9(2014).

    [9] J. D. Caldwell et al. Photonics with hexagonal boron nitride. Nat. Rev. Mater., 4, 552-567(2019).

    [10] W. Ma et al. In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature, 562, 557-562(2018).

    [11] Z. Zheng et al. A midinfrared biaxial hyperbolic van der Waals crystal. Sci. Adv., 5, eaav8690(2019).

    [12] Z. Zheng et al. Highly confined and tunable hyperbolic phonon polaritons in van der Waals semiconducting transition metal oxides. Adv. Mater., 30, 1705318(2018).

    [13] Z. Dai et al. Edge-oriented and steerable hyperbolic polaritons in anisotropic van der Waals nanocavities. Nat. Commun., 11, 1-8(2020).

    [14] G. Hu et al. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature, 582, 209-213(2020). https://doi.org/10.1038/s41586-020-2359-9

    [15] N. Passler et al. Hyperbolic shear polaritons in low-symmetry crystals. Nature, 602, 595-600(2020).

    [16] A. Ashkin. Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett., 24, 156-159(1970).

    [17] M. Padgett, R. Bowman. Tweezers with a twist. Nat. Photonics, 5, 343-348(2011).

    [18] J. Wang et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics, 6, 488-496(2012).

    [19] S. Fürhapter et al. Spiral phase contrast imaging in microscopy. Opt. Express, 13, 689-694(2005).

    [20] F. Tamburini et al. Overcoming the Rayleigh criterion limit with optical vortices. Phys. Rev. Lett., 97, 163903(2006).

    [21] K. Dholakia et al. Second-harmonic generation and the orbital angular momentum of light. Phys. Rev. A, 54, R3742-R3745(1996).

    [22] J. Courtial et al. Second-harmonic generation and the conservation of orbital angular momentum with high-order Laguerre-Gaussian modes. Phys. Rev. A, 56, 4193-4196(1997).

    [23] L. Xiong et al. Polaritonic vortices with a half-integer charge. Nano Lett., 21, 9256(2021).

    [24] M. Wang et al. Spin-orbit-locked hyperbolic polariton vortices carrying reconfigurable topological charges. eLight, 2, 12(2022).

    [25] S. Tao et al. Anisotropic Fermat’s principle for controlling hyperbolic van der Waals polaritons. Photonics Res., 10, B14-B22(2022).

    [26] M. F. Picardi, A. V. Zayats, F. J. Rodríguez-Fortuño. Janus and Huygens dipoles: near-field directionality beyond spin-momentum locking. Phys. Rev. Lett., 120, 117402(2018).

    Shuwen Xue, Yali Zeng, Sicen Tao, Tao Hou, Shan Zhu, Chuanjie Hu, Huanyang Chen. Vortex-induced quasi-shear polaritons[J]. Advanced Photonics Nexus, 2023, 2(1): 015001
    Download Citation