• Infrared and Laser Engineering
  • Vol. 50, Issue 12, 20210717 (2021)
Rongbin She1、2, Yongle Zhu1, Wenquan Liu1、2, Yuanfu Lu1, and Guangyuan Li1
Author Affiliations
  • 1Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China
  • 2Key Kaboratory of Optoelectronic Devices and System of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
  • show less
    DOI: 10.3788/IRLA20210717 Cite this Article
    Rongbin She, Yongle Zhu, Wenquan Liu, Yuanfu Lu, Guangyuan Li. Terahertz single-pixel computational imaging: Principles and applications(Invited)[J]. Infrared and Laser Engineering, 2021, 50(12): 20210717 Copy Citation Text show less
    References

    [1] B Ferguson, X C Zhang. Materials for terahertz science and technology. Nature Materials, 1, 26-33(2002).

    [2] Girolamo F V Di, M Pagano, A Tredicucci, et al. Detection of fungal infections in chestnuts: a terahertz imaging-based approach. Food Control, 123, 107700(2021).

    [3] Y Liu, H Liu, M Tang, et al. The medical application of terahertz technology in non-invasive detection of cells and tissues: opportunities and challenges. RSC Advances, 9, 9354-9363(2019).

    [4] K I Zaytsev, I N Dolganova, N V Chernomyrdin, et al. The progress and perspectives of terahertz technology for diagnosis of neoplasms: a review. Journal of Optics, 22, 013001(2020).

    [5] J H Son, S J Oh, H Cheon. Potential clinical applications of terahertz radiation. Journal of Applied Physics, 125, 190901(2019).

    [6] D Alves-Lima, J Song, X R Li, et al. Review of terahertz pulsed imaging for pharmaceutical film coating analysis. Sensors, 20, 1441(2020).

    [7] A V Shchepetilnikov, P A Gusikhin, V M Muravev, et al. New ultra-fast sub-terahertz linear scanner for postal security screening. Journal of Infrared Millimeter and Terahertz Waves, 41, 655-664(2020).

    [8] G Tzydynzhapov, P Gusikhin, V Muravev, et al. New real-time sub-terahertz security body scanner. Journal of Infrared Millimeter and Terahertz Waves, 41, 632-641(2020).

    [9] M Wan, J J Healy, J T Sheridan. Terahertz phase imaging and biomedical applications. Optics and Laser Technology, 122, 105859(2020).

    [10] Y Y Wang, L Y Chen, D G Xu, et al. Advances in terahertz three-dimensional imaging techniques. Chinese Optics, 12, 1-8(2019).

    [11] B B Hu, M C Nuss. Imaging with terahertz waves. Optics Letters, 20, 1716-1719(1995).

    [12] M Q Li, Z Y Tan, F C Qiu, et al. Fast reflective scanning imaging based on terahertz quantum-cascade laser. Acta Optica Sinica, 37, 0611004(2017).

    [13] J Liu, J F An, R Zhou, et al. Terahertz near-field MIMO-SAR technology for human security inspection. Opto-Electronic Engineering, 47, 190682(2020).

    [14] Z B Yang, D Y Tang, J Hu, et al. Near-field nanoscopic terahertz imaging of single proteins. Small, 17, 2005814(2021).

    [15] Z B Zhang, T A Lu, J Z Peng, et al. Fourier single-pixel imaging techniques and applications. Infrared and Laser Engineering, 48, 0603002(2019).

    [16] B Q Sun, S Jiang, Y Y Ma, et al. Application and development of single pixel imaging in the special wavebands and 3 D imaging. Infrared and Laser Engineering, 49, 0303016(2020).

    [17] W Huang, S Y Jiao, C Y Xiao. Image processing algorithms related to single-pixel imaging: A review. Laser & Optoelectronics Progress, 58, 1011021(2021).

    [18] J Y Peng, H Q Jin, J H Shi, et al. Data acquisition system for high speed single-pixel camera. Optics and Precision Engineering, 22, 837-843(2014).

    [19] T Chen, Z W Li, J L W, et al. Imaging system of single pixel camera based on compressed sensing. Optics and Precision Engineering, 20, 2523-2530(2012).

    [20] M P Edgar, G M Gibson, M J Padgett. Principles and prospects for single-pixel imaging. Nature Photonics, 13, 13-20(2019).

    [21] A Schori, S Shwartz. X-ray ghost imaging with a laboratory source. Optics Express, 25, 14822-14828(2017).

    [22] H Yu, R H Lu, S S Han, et al. Fourier-transform ghost imaging with hard X Rays. Physical Review Letters, 117, 113901(2016).

    [23] J Greenberg, K Krishnamurthy, D Brady. Compressive single-pixel snapshot X-ray diffraction imaging. Optics Letters, 39, 111-114(2014).

    [24] N Radwell, K J Mitchell, G M Gibson, et al. Single-pixel infrared and visible microscope. Optica, 1, 285-289(2014).

    [25] M P Edgar, G M Gibson, R W Bowman, et al. Simultaneous real-time visible and infrared video with single-pixel detectors. Scientific Reports, 5, 10669(2015).

    [26] L Zanotto, R Piccoli, J L Dong, et al. Single-pixel terahertz imaging: a review. Opto-Electronic Advances, 3, 200012(2020).

    [27] S C Chen, L H Du, L G Zhu. THz wave computational ghost imaging: principles and outlooks. Opto-Electronic Engineering, 47, 200024(2020).

    [28] Stantchev R I, PickwellMacPherson E. Spatial TerahertzLight Modulats f SinglePixel Cameras [MOL]Terahertz Technology [Wking Title]. (20210322). https: www. intechopen. comonlinefirst75638.

    [29] Y F Bai, H Y Gao, T G Liu, et al. Visibility of ghost imaging in a two-arm microscope imaging system. Journal of Modern Optics, 59, 360-364(2012).

    [30] Q Shen, Y F Bai, X H Shi, et al. Ghost microscope imaging system from the perspective of coherent-mode representation. Laser Physics Letters, 15, 035207(2018).

    [31] L H Zhang, B Tang, F Q Wang, et al. On the characteristics of photoacoustic imaging based on the algorithm of computational ghost imaging. Lasers in Engineering, 25, 1-11(2013).

    [32] N Huynh, E Zhang, M Betcke, et al. Single-pixel optical camera for video rate ultrasonic imaging. Optica, 3, 26-29(2016).

    [33] J M Yang, L Gong, X Xu, et al. Motionless volumetric photoacoustic microscopy with spatially invariant resolution. Nature Communications, 8, 780(2017).

    [34] F Rousset, N Ducros, F Peyrin, et al. Time-resolved multispectral imaging based on an adaptive single-pixel camera. Optics Express, 26, 10550-10558(2018).

    [35] L H Bian, J L Suo, G H Situ, et al. Multispectral imaging using a single bucket detector. Scientific Reports, 6, 24752(2016).

    [36] K M Czajkowski, A Pastuszczak, R Kotynski. Real-time single-pixel video imaging with Fourier domain regularization. Optics Express, 26, 20009-20022(2018).

    [37] S Bi, X Zeng, X Tang, et al. Compressive video recovery using block match multi-frame motion estimation based on single pixel cameras. Sensors, 16, 318(2016).

    [38] J J Teng, Q Guo, M H Chen, et al. Time-encoded single-pixel 3D imaging. APL Photonics, 5, 020801(2020).

    [39] Y W Zhang, M P Edgar, B Q Sun, et al. 3D single-pixel video. Journal of Optics, 18, 035203(2016).

    [40] B Sun, M P Edgar, R Bowman, et al. 3D computational imaging with single-pixel detectors. Science, 340, 844-847(2013).

    [41] P Clemente, V Duran, E Tajahuerce, et al. Compressive holography with a single-pixel detector. Optics Letters, 38, 2524-2527(2013).

    [42] S M Jiao, J Feng, Y Gao, et al. Visual cryptography in single-pixel imaging. Optics Express, 28, 7301-7313(2020).

    [43] P X Zheng, Q Dai, Z L Li, et al. Metasurface-based key for computational imaging encryption. Science Advances, 7, eabg0363(2021).

    [44] G M Gibson, B Q Sun, M P Edgar, et al. Real-time imaging of methane gas leaks using a single-pixel camera. Optics Express, 25, 2998-3005(2017).

    [45] R A Lewis. A review of terahertz sources. Journal of Physics D: Applied Physics, 47, 374001(2014).

    [46] J Neu, C A Schmuttenmaer. Tutorial: An introduction to terahertz time domain spectroscopy (THz-TDS). Journal of Applied Physics, 124, 231101(2018).

    [47] Y Gong, Q Zhou, H Tian, et al. Terahertz radiation sources based on electronics. Journal of Shenzhen University Science and Engineering, 36, 111-127(2019).

    [48] G Z Liang, T Liu, Q J Wang. Recent developments of terahertz quantum cascade lasers. IEEE Journal of Selected Topics in Quantum Electronics, 23, 1200118(2017).

    [49] K Zhong, W Shi, D G Xu, et al. Optically pumped terahertz sources. Science China-Technological Sciences, 60, 1801-1818(2017).

    [50] W L Chan, K Charan, D Takhar, et al. A single-pixel terahertz imaging system based on compressed sensing. Applied Physics Letters, 93, 121105(2008).

    [51] H Shen, L Gan, N Newman, et al. Spinning disk for compressive imaging. Optics Letters, 37, 46-48(2012).

    [52] H L Cai, Q P Huang, X Hu, et al. All-optical and ultrafast tuning of terahertz plasmonic metasurfaces. Advanced Optical Materials, 6, 1800143(2018).

    [53] G Daniel, S Egor, R Sebastián, et al. Influence of the geometric parameters of the electrical ring resonator metasurface on the performance of metamaterial absorbers for terahertz applications. Chinese Optics, 11, 47-59(2018).

    [54] L Wang, Y X Zhang, X Q Guo, et al. A review of THz modulators with dynamic tunable metasurfaces. Nanomaterials, 9, 965(2019).

    [55] H T Chen, W J Padilla, J M O Zide, et al. Active terahertz metamaterial devices. Nature, 444, 597-600(2006).

    [56] C M Watts, D Shrekenhamer, J Montoya, et al. Terahertz compressive imaging with metamaterial spatial light modulators. Nature Photonics, 8, 605-609(2014).

    [57] Chen I C A, Park SW, Karaalioglu C, et al. Semiconduct based optically controlled THz optics [C]Proceedings of the Terahertz f Military Security Applications V, 2007.

    [58] Z W Xie, X K Wang, J S Ye, et al. Spatial terahertz modulator. Scientific Reports, 3, 3347(2013).

    [59] D Shrekenhamer, C M Watts, W J Padilla. Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator. Optics Express, 21, 12507-12518(2013).

    [60] Bin Shams M I, Jiang Z, Rahman S, et al. Approaching realtime terahertz imaging using photoinduced reconfigurable aperture arrays [C]Proceedings of the Terahertz Physics, Devices, Systems Viii: Advanced Applications in Industry Defense, 2014.

    [61] S Augustin, J Hieronymus, P Jung, et al. Compressed sensing in a fully non-mechanical 350 GHz imaging setting. Journal of Infrared Millimeter and Terahertz Waves, 36, 496-512(2015).

    [62] A Kannegulla, Shams M I Bin, L Liu, et al. Photo-induced spatial modulation of THz waves: Opportunities and limitations. Optics Express, 23, 32098-32112(2015).

    [63] R B She, W Q Liu, G L Wei, et al. Terahertz single-pixel imaging improved by using silicon wafer with SiO2 passivation. Applied Sciences-Basel, 10, 2427(2020).

    [64] P Weis, J L Garcia-Pomar, M Hoeh, et al. Spectrally wide-band terahertz wave modulator based on optically tuned graphene. ACS Nano, 6, 9118-9124(2012).

    [65] D W Zhai, H L Liu, X Sedao, et al. Optically induced abnormal terahertz absorption in black silicon. Chinese Physics B, 27, 027802(2018).

    [66] Z W Shi, X X Cao, Q Y Wen, et al. Terahertz modulators based on silicon nanotip array. Advanced Optical Materials, 6, 1700620(2018).

    [67] B Zhang, T He, L Zhong, et al. Recent process of terahertz wave modulator based on organic photoelectric materials. Chinese Journal of Laser, 46, 0614012(2019).

    [68] Z Ren, L Cheng, L Hu, et al. Photoinduced broad-band tunable terahertz absorber based on a VO2 thin film. ACS Applied Materials & Interfaces, 12, 48811-48819(2020).

    [69] P Gopalan, B Sensale-Rodriguez. 2 D Materials for terahertz modulation. Advanced Optical Materials, 8, 1900550(2020).

    [70] J P Zhao, E Yiwen, K Williams, et al. Spatial sampling of terahertz fields with sub-wavelength accuracy via probe-beam encoding. Light-Science & Applications, 8, 55(2019).

    [71] L Olivieri, J S T Gongora, L Peters, et al. Hyperspectral terahertz microscopy via nonlinear ghost imaging. Optica, 7, 186-191(2020).

    [72] S C Chen, Z Feng, J Li, et al. Ghost spintronic THz-emitter-array microscope. Light-Science & Applications, 9, 99(2020).

    [73] Z J Zhang, L Liu, A A Sajak, et al. Spinning disk as a spatial light modulator for rapid infrared imaging. IET Microwaves Antennas & Propagation, 11, 317-323(2017).

    [74] G M Gibson, S D Johnson, M J Padgett. Single-pixel imaging 12 years on: A review. Optics Express, 28, 28190-28208(2020).

    [75] Y H He, A X Zhang, M F Li, et al. High-resolution sub-sampling incoherent X-ray imaging with a single-pixel detector. APL Photonics, 5, 056102(2020).

    [76] D L Donoho. Compressed sensing. IEEE Transactions on Information Theory, 52, 1289-1306(2006).

    [77] Zhao Y Q, Zhang L L, Duan G T, et al. Singlepixel terahertz imaging via compressed sensing [C]Proceedings of the International Symposium on Photoelectronic Detection Imaging 2011 Terahertz Wave Technologies Applications, 2011.

    [78] She R B, Lu Y F, Liu W Q, et al. A lowcost singlepixel terahertz imaging method using nearfield photomodulation compressed sensing [C]Proceedings of the Infrared, MillimeterWave, Terahertz Technologies Vi, 2019.

    [79] Y Lu, X K Wang, W F Sun, et al. Reflective single-pixel terahertz imaging based on compressed sensing. IEEE Transactions on Terahertz Science and Technology, 10, 495-501(2020).

    [80] Z B Zhang, X Ma, J G Zhong. Single-pixel imaging by means of Fourier spectrum acquisition. Nature Communications, 6, 7225(2015).

    [81] R B She, W Q Liu, Y F Lu, et al. Fourier single-pixel imaging in the terahertz regime. Applied Physics Letters, 115, 021101(2019).

    [82] Z B Zhang, X Y Wang, G Zheng, et al. Hadamard single-pixel imaging versus Fourier single-pixel imaging. Optics Express, 25, 19619-19639(2017).

    [83] Z B Zhang, X Y Wang, G A Zheng, et al. Fast Fourier single-pixel imaging via binary illumination. Scientific Reports, 7, 12029(2017).

    [84] A Sinha, J Lee, S Li, et al. Lensless computational imaging through deep learning. Optica, 4, 1117-1125(2017).

    [85] C W Tian, L K Fei, W X Zheng, et al. Deep learning on image denoising: An overview. Neural Networks, 131, 251-275(2020).

    [86] C F Higham, R Murray-Smith, M J Padgett, et al. Deep learning for real-time single-pixel video. Scientific Reports, 8, 2369(2018).

    [87] S Rizvi, J Cao, K Y Zhang, et al. Deringing and denoising in extremely under-sampled Fourier single pixel imaging. Optics Express, 28, 7360-7374(2020).

    [88] Z Y Long, T Y Wang, C W You, et al. Terahertz image super-resolution based on a deep convolutional neural network. Applied Optics, 58, 2731-2735(2019).

    [89] Y Wang, F Qi, J Wang. Terahertz image super-resolution based on a complex convolutional neural network. Optics Letters, 46, 3123-3126(2021).

    [90] H Li, B Li, L P Ma, et al. Terahertz spectrum imaging technology and its application in security inspection. Journal of Yunnan Police College, 122-128(2020).

    [91] B B Cheng, H P Li, J F An, et al. Application of terahertz imaging in standoff security inspection. Journal of Terahertz Science and Electronic Information Technology, 13, 843-848(2015).

    [92] S Augustin, P Jung, S Frohmann, et al. Terahertz dynamic aperture imaging at standoff distances using a compressed sensing protocol. IEEE Transactions on Terahertz Science and Technology, 9, 364-372(2019).

    [93] H X Liu, J Q Yao, Y Y Wang, et al. Review of THz near-field imaging. Journal of Infrared and Millimeter Waves, 35, 300-309(2016).

    [94] R I Stantchev, B Sun, S M Hornett, et al. Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector. Science Advances, 2, e1600190(2016).

    [95] R I Stantchev, D B Phillips, P Hobson, et al. Compressed sensing with near-field THz radiation. Optica, 4, 989-992(2017).

    [96] S-C Chen, L-H Du, K Meng, et al. Terahertz wave near-field compressive imaging with a spatial resolution of over lambda/100. Optics Letters, 44, 21-24(2019).

    [97] L Olivieri, J S T Gongora, A Pasquazi, et al. Time-resolved nonlinear ghost imaging. ACS Photonics, 5, 3379-3388(2018).

    [98] Z B Zhang, J Q Ye, Q W Deng, et al. Image-free real-time detection and tracking of fast moving object using a single-pixel detector. Optics Express, 27, 35394-35401(2019).

    [99] S M Jiao, J Feng, Y Gao, et al. Optical machine learning with incoherent light and a single-pixel detector. Optics Letters, 44, 5186-5189(2019).

    [100] B Limbacher, S Schoenhuber, M Wenclawiak, et al. Terahertz optical machine learning for object recognition. APL Photonics, 5, 126103(2020).

    Rongbin She, Yongle Zhu, Wenquan Liu, Yuanfu Lu, Guangyuan Li. Terahertz single-pixel computational imaging: Principles and applications(Invited)[J]. Infrared and Laser Engineering, 2021, 50(12): 20210717
    Download Citation