• Acta Optica Sinica
  • Vol. 41, Issue 8, 0823011 (2021)
Zilan Deng1, Fengjun Li1, Tan Shi1, and Guoping Wang2、*
Author Affiliations
  • 1Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, Guangdong 510632, China
  • 2Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, Guangdong 518060, China
  • show less
    DOI: 10.3788/AOS202141.0823011 Cite this Article Set citation alerts
    Zilan Deng, Fengjun Li, Tan Shi, Guoping Wang. Metagratings for Controlling Diffractive Optical Fields: Physics and Applications[J]. Acta Optica Sinica, 2021, 41(8): 0823011 Copy Citation Text show less
    References

    [1] Yu N F, Genevet P, Kats M A et al. Light propagation with phase discontinuities: Generalized laws of reflection and refraction[J]. Science, 334, 333-337(2011).

    [2] Khorasaninejad M, Chen W T, Devlin R C et al. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 352, 1190-1194(2016). http://pubs.acs.org/servlet/linkout?suffix=ref38/cit38&dbid=8&doi=10.1021%2Facs.nanolett.6b01897&key=27257251

    [3] Khorasaninejad M, Capasso F. Metalenses: Versatile multifunctional photonic components[J]. Science, 358(2017). http://www.ncbi.nlm.nih.gov/pubmed/28982796

    [4] Zheng G, Mühlenbernd H, Kenney M et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 10, 308-312(2015).

    [5] Sun S, He Q, Xiao S et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nature Materials, 11, 426-431(2012).

    [6] Huang L L, Chen X Z, Mühlenbernd H et al. Dispersionless phase discontinuities for controlling light propagation[J]. Nano Letters, 12, 5750-5755(2012).

    [7] Arbabi A, Horie Y, Bagheri M et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nature Nanotechnology, 10, 937-943(2015).

    [8] Wang S, Wu P C, Su V C et al. Broadband achromatic optical metasurface devices[J]. Nature Communications, 8, 187(2017). http://www.ncbi.nlm.nih.gov/pubmed/28775300

    [9] Wang S M, Wu P C, Su V C et al. A broadband achromatic metalens in the visible[J]. Nature Nanotechnology, 13, 227-232(2018).

    [10] Chen W T, Zhu A Y, Sanjeev V et al. A broadband achromatic metalens for focusing and imaging in the visible[J]. Nature Nanotechnology, 13, 220-226(2018).

    [11] Yang Y M, Wang W Y, Moitra P et al. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation[J]. Nano Letters, 14, 1394-1399(2014). http://europepmc.org/abstract/med/24547692

    [12] Wen Y, Chremmos I, Chen Y et al. Spiral transformation for high-resolution and efficient sorting of optical vortex modes[J]. Physical Review Letters, 120, 193904(2018). http://www.ncbi.nlm.nih.gov/pubmed/29799240

    [13] Liu Z X, Liu Y Y, Ke Y G et al. Generation of arbitrary vector vortex beams on hybrid-order Poincaré sphere[J]. Photonics Research, 5, 15-21(2017). http://www.opticsinfobase.org/prj/abstract.cfm?uri=prj-5-1-15

    [14] Guo X Y, Li P, Zhong J Z et al. Tying polarization-switchable optical vortex knots and links via holographic all-dielectric metasurfaces[J]. Laser & Photonics Reviews, 14, 1900366(2020). http://onlinelibrary.wiley.com/doi/10.1002/lpor.201900366

    [15] Guo Y H, Huang Y J, Li X et al. Polarization-controlled broadband accelerating beams generation by single catenary-shaped metasurface[J]. Advanced Optical Materials, 7, 1900503(2019). http://onlinelibrary.wiley.com/doi/10.1002/adom.201900503

    [16] Henstridge M, Pfeiffer C, Wang D et al. Accelerating light with metasurfaces[J]. Optica, 5, 678-681(2018). http://www.opticsinfobase.org/optica/abstract.cfm?uri=optica-5-6-678

    [17] Henstridge M, Pfeiffer C, Wang D et al. Synchrotron radiation from an accelerating light pulse[J]. Science, 362, 439-442(2018). http://d.wanfangdata.com.cn/periodical/ChlQZXJpb2RpY2FsRW5nTmV3UzIwMjEwMzAyEiA3NDA3ZGNhODg0M2MyMmIzMGUyMTliYTk3ZGZhMGY5MhoINnRrMzZiMW8%3D

    [18] Fan Q B, Zhu W Q, Liang Y Z et al. Broadband generation of photonic spin-controlled arbitrary accelerating light beams in the visible[J]. Nano Letters, 19, 1158-1165(2019). http://www.researchgate.net/publication/330025108_Broadband_Generation_of_Photonic_Spin-Controlled_Arbitrary_Accelerating_Light_Beams_in_the_Visible

    [19] Yu N, Aieta F, Genevet P et al. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces[J]. Nano Letters, 12, 6328-6333(2012). http://www.ncbi.nlm.nih.gov/pubmed/23130979

    [20] Wu P C, Tsai W Y, Chen W T et al. Versatile polarization generation with an aluminum plasmonic metasurface[J]. Nano Letters, 17, 445-452(2017).

    [21] Ni Y B, Chen S, Wang Y J et al. Metasurface for structured light projection over 120° field of view[J]. Nano Letters, 20, 6719-6724(2020). http://www.researchgate.net/publication/343564284_Metasurface_for_structured_light_projection_over_120-degree_field_of_view

    [22] Huang L L, Chen X Z, Mühlenbernd H et al. Three-dimensional optical holography using a plasmonic metasurface[J]. Nature Communications, 4, 2808(2013). http://pubmedcentralcanada.ca/pmcc/articles/PMC3868226/

    [23] Wan W W, Gao J, Yang X D. Full-color plasmonic metasurface holograms[J]. ACS Nano, 10, 10671-10680(2016). http://www.ncbi.nlm.nih.gov/pubmed/27652821

    [24] Deng Z L, Li G X. Metasurface optical holography[J]. Materials Today Physics, 3, 16-32(2017).

    [25] Wang B, Dong F L, Li Q T et al. Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms[J]. Nano Letters, 16, 5235-5240(2016). http://pubs.acs.org/doi/10.1021/acs.nanolett.6b02326

    [26] Zhao R, Sain B, Wei Q et al. Multichannel vectorial holographic display and encryption[J]. Light, Science & Applications, 7, 95(2018). http://www.nature.com/articles/s41377-018-0091-0

    [27] Deng Z L, Li X P, Li G X. Metasurface holography[J]. Synthesis Lectures on Materials and Optics, 1, 1-76(2020).

    [28] Ra'di Y, Sounas D L, Alù A. Metagratings: Beyond the limits of graded metasurfaces for wave front control[J]. Physical Review Letters, 119, 067404(2017). http://europepmc.org/abstract/MED/28949646

    [29] Deng Z L, Zhang S, Wang G P. A facile grating approach towards broadband, wide-angle and high-efficiency holographic metasurfaces[J]. Nanoscale, 8, 1588-1594(2016). http://www.ncbi.nlm.nih.gov/pubmed/26689542

    [30] Sun S, Yang K Y, Wang C M et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces[J]. Nano Letters, 12, 6223-6229(2012). http://europepmc.org/abstract/MED/23189928

    [31] Rabinovich O, Epstein A. Analytical design of printed circuit board (PCB) metagratings for perfect anomalous reflection[J]. IEEE Transactions on Antennas and Propagation, 66, 4086-4095(2018). http://ieeexplore.ieee.org/document/8359078/

    [32] Khorasaninejad M, Ambrosio A, Kanhaiya P et al. Broadband and chiral binary dielectric meta-holograms[J]. Science Advances, 2, e1501258(2016). http://pubmedcentralcanada.ca/pmcc/articles/PMC4928906/

    [33] Yi S, Zhou M, Yu Z et al. Subwavelength angle-sensing photodetectors inspired by directional hearing in small animals[J]. Nature Nanotechnology, 13, 1143-1147(2018). http://www.ncbi.nlm.nih.gov/pubmed/30374161

    [34] Huang K, Liu H, Restuccia S et al. Spiniform phase-encoded metagratings entangling arbitrary rational-order orbital angular momentum[J]. Light, Science & Applications, 7, 17156(2018).

    [35] Pors A, Nielsen M G, Bozhevolnyi S I. Plasmonic metagratings for simultaneous determination of Stokes parameters[J]. Optica, 2, 716(2015). http://figshare.com/articles/Supplement_1_Plasmonic_metagratings_for_simultaneous_determination_of_Stokes_parameters/4921937

    [36] Lawrence M, Barton D R, Dionne J A. Nonreciprocal flat optics with silicon metasurfaces[J]. Nano Letters, 18, 1104-1109(2018).

    [37] Zhou Z P, Li J T, Su R B et al. Efficient silicon metasurfaces for visible light[J]. ACS Photonics, 4, 544-551(2017). http://pubs.acs.org/doi/abs/10.1021/acsphotonics.6b00740

    [38] Neder V. Ra'di Y, Alù A, et al. Combined metagratings for efficient broad-angle scattering metasurface[J]. ACS Photonics, 6, 1010-1017(2019).

    [39] Peng C Y, Li L, Qiao Q F et al. Multifunctional silicon metagratings based on multiple periodicity design[J]. Journal of Optics, 22, 045103(2020). http://iopscience.iop.org/article/10.1088/2040-8986/ab7b03

    [40] Uleman F, Neder V, Cordaro A et al. Resonant metagratings for spectral and angular control of light for colored rooftop photovoltaics[J]. ACS Applied Energy Materials, 3, 3150-3156(2020). http://pubs.acs.org/doi/10.1021/acsaem.0c00027

    [41] Feng A, Yu Z, Sun X. Ultranarrow-band metagrating absorbers for sensing and modulation[J]. Optics Express, 26, 28197-28205(2018).

    [42] Wan W Q, Luo M H, Su Y F. Ultrathin polarization-insensitive, broadband visible absorber based rectangular metagratings[J]. Optics Communications, 458, 124857(2020).

    [43] Ra'di Y, Sounas D L, Alù A. Metagratings: Beyond the limits of graded metasurfaces for wave front control[J]. Physical Review Letters, 119, 067404(2017). http://europepmc.org/abstract/MED/28949646

    [44] Wong A M, Christian P, Eleftheriades G V. Binary Huygens' metasurfaces: Experimental demonstration of simple and efficient near-grazing retroreflectors for TE and TM polarizations[J]. IEEE Transactions on Antennas and Propagation, 66, 2892-2903(2018). http://ieeexplore.ieee.org/document/8318620/references

    [45] Asadchy V S, Wickberg A, Díaz-Rubio A et al. Eliminating scattering loss in anomalously reflecting optical metasurfaces[J]. ACS Photonics, 4, 1264-1270(2017). http://pubs.acs.org/doi/abs/10.1021/acsphotonics.7b00213

    [46] Deng Z L, Deng J, Zhuang X et al. Facile metagrating holograms with broadband and extreme angle tolerance[J]. Light, Science & Applications, 7, 78(2018).

    [47] Epstein A, Rabinovich O. Unveiling the properties of metagratings via a detailed analytical model for synthesis and analysis[J]. Physical Review Applied, 8, 054037(2017). http://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.8.054037

    [48] Rabinovich O, Kaplon I, Reis J et al. Experimental demonstration and in-depth investigation of analytically designed anomalous reflection metagratings[J]. Physical Review B, 99, 125101(2019). http://journals.aps.org/prb/abstract/10.1103/PhysRevB.99.125101

    [49] Popov V, Boust F, Burokur S N. Controlling diffraction patterns with metagratings[J]. Physical Review Applied, 10, 011002(2018). http://arxiv.org/abs/1803.09108

    [50] Popov V, Yakovleva M, Boust F et al. Designing metagratings via local periodic approximation: From microwaves to infrared[J]. Physical Review Applied, 11, 044054(2019). http://arxiv.org/abs/1812.10164

    [51] Wong A M, Eleftheriades G V. Perfect anomalous reflection with a bipartite Huygens' metasurface[J]. Physical Review X, 8, 011036(2018). http://arxiv.org/abs/1709.04990

    [52] Rahmanzadeh M, Khavasi A. Perfect anomalous reflection using a compound metallic metagrating[J]. Optics Express, 28, 16439-16452(2020). http://arxiv.org/abs/1912.09139

    [53] Popov V, Boust F, Burokur S N. Beamforming with metagratings at microwave frequencies: Design procedure and experimental demonstration[J]. IEEE Transactions on Antennas and Propagation, 68, 1533-1541(2020). http://www.researchgate.net/publication/337875994_Beamforming_With_Metagratings_at_Microwave_Frequencies_Design_Procedure_and_Experimental_Demonstration

    [54] Popov V, Boust F, Burokur S N. Constructing the near field and far field with reactive metagratings: Study on the degrees of freedom[J]. Physical Review Applied, 11, 024074(2019). http://www.researchgate.net/publication/331424261_Constructing_the_Near_field_and_Far_field_with_Reactive_Metagratings_Study_on_the_Degrees_of_Freedom

    [55] Dong X P, Cheng J R, Fan F et al. Extremely large-angle beam deflection based on low-index sparse dielectric metagratings[J]. Journal of Physics D: Applied Physics, 53, 245101(2020). http://www.researchgate.net/publication/339710498_Extremely_large-angle_beam_deflection_based_on_low-index_sparse_dielectric_metagratings

    [56] Dong X P, Cheng J R, Fan F et al. Low-index second-order metagratings for large-angle anomalous reflection[J]. Optics Letters, 44, 939-942(2019). http://www.researchgate.net/publication/331022737_Low-index_second-order_metagratings_for_large-angle_anomalous_reflection

    [57] Behroozinia S, Rajabalipanah H, Abdolali A. Real-time terahertz wave channeling via multifunctional metagratings: A sparse array of all-graphene scatterers[J]. Optics Letters, 45, 795-798(2020). http://www.researchgate.net/publication/338415148_Real-time_Terahertz_Wave_Channeling_via_Multifunctional_Metagratings_A_Sparse_Array_of_All-Graphene_Scatterers

    [58] Alaee R, Albooyeh M, Yazdi M et al. Magnetoelectric coupling in nonidentical plasmonic nanoparticles: Theory and applications[J]. Physical Review B, 91, 115119(2015). http://smartsearch.nstl.gov.cn/paper_detail.html?id=81c16923ca94e4b2ca22da5eb540a5da

    [59] Estakhri N M, Neder V, Knight M W et al. Visible light, wide-angle graded metasurface for back reflection[J]. ACS Photonics, 4, 228-235(2017). http://pubs.acs.org/doi/10.1021/acsphotonics.6b00965

    [60] Du J J, Lin Z F, Chui S T et al. Nearly total omnidirectional reflection by a single layer of nanorods[J]. Physical Review Letters, 110, 163902(2013). http://europepmc.org/abstract/med/23679606

    [61] Fan Z Y, Shcherbakov M R, Allen M et al. Perfect diffraction with multiresonant bianisotropic metagratings[J]. ACS Photonics, 5, 4303-4311(2018). http://pubs.acs.org/doi/10.1021/acsphotonics.8b00434

    [62] Dong X P, Cheng J R, Fan F et al. Efficient wide-band large-angle refraction and splitting of a terahertz beam by low-index 3D-printed bilayer metagratings[J]. Physical Review Applied, 14, 014064(2020). http://www.researchgate.net/publication/343149253_Efficient_Wide-Band_Large-Angle_Refraction_and_Splitting_of_a_Terahertz_Beam_by_Low-Index_3D-Printed_Bilayer_Metagratings

    [63] Gan W F, Li W, Du J J et al. Steering and tuning of on-chip optical beams. [C]∥2014 XXXIth URSI General Assembly and Scientific Symposium (URSI GASS), August 16-23, 2014, Beijing, China.New York: IEEE, 14693481(2014).

    [64] Khorasaninejad M, Capasso F. Broadband multifunctional efficient meta-gratings based on dielectric waveguide phase shifters[J]. Nano Letters, 15, 6709-6715(2015). http://europepmc.org/abstract/MED/26372331

    [65] Khaidarov E, Hao H F, Paniagua-Domínguez R et al. Asymmetric nanoantennas for ultrahigh angle broadband visible light bending[J]. Nano Letters, 17, 6267-6272(2017). http://europepmc.org/abstract/MED/28898084

    [66] Sell D, Yang J J, Doshay S et al. Large-angle, multifunctional metagratings based on freeform multimode geometries[J]. Nano Letters, 17, 3752-3757(2017).

    [67] Rabinovich O, Epstein A. Arbitrary diffraction engineering with multilayered multielement metagratings[J]. IEEE Transactions on Antennas and Propagation, 68, 1553-1568(2020). http://ieeexplore.ieee.org/document/8892735/

    [68] Du J J, Lin Z F, Chui S T et al. Optical beam steering based on the symmetry of resonant modes of nanoparticles[J]. Physical Review Letters, 106, 203903(2011). http://europepmc.org/abstract/MED/21668230

    [69] Liu W, Miroshnichenko A E. Beam steering with dielectric metalattices[J]. ACS Photonics, 5, 1733-1741(2018). http://pubs.acs.org/doi/10.1021/acsphotonics.7b01217

    [70] Panagiotidis E, Almpanis E, Stefanou N et al. Multipolar interactions in Si sphere metagratings[J]. Journal of Applied Physics, 128, 093103(2020).

    [71] Wu A, Li H, Du J et al. Experimental demonstration of in-plane negative-angle refraction with an array of silicon nanoposts[J]. Nano Letters, 15, 2055-2060(2015). http://d.wanfangdata.com.cn/periodical/023faf14066541678dcad6d730eba521

    [72] Deng Z L, Ye X, Qiu H Y et al. Transmissive metagrating for arbitrary wavefront shaping over the full visible spectrum[J]. Nanoscale, 12, 20604-20609(2020). http://arxiv.org/abs/2003.08036

    [73] Shi W Y, Deng W M, Liu W N et al. Rectangular dielectric metagrating for high-efficiency diffraction with large-angle deflection[J]. Chinese Optics Letters, 18, 073601(2020). http://www.opticsjournal.net/Articles/Abstract?aid=OJd5bca17cd7d1afb2

    [74] Shi T, Wang Y J, Deng Z L et al. All-dielectric kissing-dimer metagratings for asymmetric high diffraction[J]. Advanced Optical Materials, 7, 1901389(2019). http://onlinelibrary.wiley.com/doi/pdf/10.1002/adom.201901389

    [75] Yang J J, Sell D, Fan J A. Freeform metagratings based on complex light scattering dynamics for extreme, high efficiency beam steering[J]. Annalen Der Physik, 530, 1700302(2018). http://onlinelibrary.wiley.com/doi/full/10.1002/andp.201700302

    [76] Inampudi S, Mosallaei H. Neural network based design of metagratings[J]. Applied Physics Letters, 112, 241102(2018).

    [77] Jiang J, Sell D, Hoyer S et al. Free-form diffractive metagrating design based on generative adversarial networks[J]. ACS Nano, 13, 8872-8878(2019). http://www.researchgate.net/publication/334529796_Free-Form_Diffractive_Metagrating_Design_Based_on_Generative_Adversarial_Networks

    [78] Tan Z Y, Fan F, Dong X P et al. Nonreciprocal terahertz beam steering based on magneto-optic metagratings[J]. Scientific Reports, 9, 20210(2019). http://www.nature.com/articles/s41598-019-56789-x

    [79] Ra'di Y, Alù A. Reconfigurable metagratings[J]. ACS Photonics, 5, 1779-1785(2018).

    [80] Casolaro A, Toscano A, Alù A et al. Dynamic beam steering with reconfigurable metagratings[J]. IEEE Transactions on Antennas and Propagation, 68, 1542-1552(2020). http://ieeexplore.ieee.org/document/8895835/

    [81] Zhang Z Y, Kang M, Zhang X Q et al. Coherent perfect diffraction in metagratings[J]. Advanced Materials, 32, 2002341(2020). http://www.ncbi.nlm.nih.gov/pubmed/32700816

    [82] Li M, Jing L Q, Lin X et al. Angular-adaptive spin-locked retroreflector based on reconfigurable magnetic metagrating[J]. Advanced Optical Materials, 7, 1900151(2019). http://onlinelibrary.wiley.com/doi/10.1002/adom.201900151

    [83] Paniagua-Domínguez R, Yu Y F, Khaidarov E et al. A metalens with a near-unity numerical aperture[J]. Nano Letters, 18, 2124-2132(2018). http://www.ncbi.nlm.nih.gov/pubmed/29485885

    [84] Kang M. Ra'Di Y, Farfan D, et al. Efficient focusing with large numerical aperture using a hybrid metalens[J]. Physical Review Applied, 13, 044016(2020).

    [85] Deng Z L, Zhang S, Wang G P. Wide-angled off-axis achromatic metasurfaces for visible light[J]. Optics Express, 24, 23118-23128(2016). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-24-20-23118

    [86] Deng Z L, Cao Y Y, Li X P et al. Multifunctional metasurface: From extraordinary optical transmission to extraordinary optical diffraction in a single structure[J]. Photonics Research, 6, 443-450(2018).

    [87] Wan W Q, Qiao W, Pu D L et al. Holographic sampling display based on metagratings[J]. iScience, 23, 100773(2020). http://www.sciencedirect.com/science/article/pii/S2589004219305188

    [88] Dolev I, Epstein I, Arie A. Surface-plasmon holographic beam shaping[J]. Physical Review Letters, 109, 203903(2012). http://www.ncbi.nlm.nih.gov/pubmed/23215490

    [89] Chang C M, Tseng M L, Cheng B H et al. Three-dimensional plasmonic micro projector for light manipulation[J]. Advanced Materials, 25, 1118-1123(2013). http://www.ncbi.nlm.nih.gov/pubmed/23212782/

    [90] Chen J, Li T, Wang S M et al. Multiplexed holograms by surface plasmon propagation and polarized scattering[J]. Nano Letters, 17, 5051-5055(2017). http://pubs.acs.org/doi/10.1021/acs.nanolett.7b02295

    [91] Chen Y H, Huang L, Gan L et al. Wavefront shaping of infrared light through a subwavelength hole[J]. Light: Science & Applications, 1, e26(2012). http://www.nature.com/lsa/journal/v1/n8/abs/lsa201226a.html

    [92] Genevet P, Lin J, Kats M A et al. Holographic detection of the orbital angular momentum of light with plasmonic photodiodes[J]. Nature Communications, 3, 1278(2012). http://europepmc.org/abstract/MED/23232408

    [93] Li S Q, Xu X W, Maruthiyodan Veetil R et al. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface[J]. Science, 364, 1087-1090(2019). http://arxiv.org/abs/1901.07742

    [94] Deng Z L, Deng J H, Zhuang X et al. Diatomic metasurface for vectorial holography[J]. Nano Letters, 18, 2885-2892(2018).

    [95] Bao Y J, Yu Y, Xu H F et al. Coherent pixel design of metasurfaces for multidimensional optical control of multiple printing-image switching and encoding[J]. Advanced Functional Materials, 28, 1805306(2018). http://onlinelibrary.wiley.com/doi/10.1002/adfm.201805306

    [96] Bao Y J, Yu Y, Xu H F et al. Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation-brightness control[J]. Light: Science & Applications, 8, 1-10(2019). http://www.nature.com/articles/s41377-019-0206-2

    [97] Deng Z L, Jin M K, Ye X et al. Full-color complex-amplitude vectorial holograms based on multi-freedom metasurfaces[J]. Advanced Functional Materials, 30, 1910610(2020). http://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201910610

    [98] Bao Y J, Ni J C, Qiu C W. A minimalist single-layer metasurface for arbitrary and full control of vector vortex beams[J]. Advanced Materials, 32, 1905659(2020). http://onlinelibrary.wiley.com/doi/10.1002/adma.201905659

    [99] Xie Y Y, Ni P N, Wang Q H et al. Metasurface-integrated vertical cavity surface-emitting lasers for programmable directional lasing emissions[J]. Nature Nanotechnology, 15, 125-130(2020). http://www.nature.com/articles/s41565-019-0611-y

    [100] Sroor H, Huang Y W, Sephton B et al. High-purity orbital angular momentum states from a visible metasurface laser[J]. Nature Photonics, 14, 498-503(2020). http://www.nature.com/articles/s41566-020-0623-z

    [101] Huang C, Zhang C, Xiao S M et al. Ultrafast control of vortex microlasers[J]. Science, 367, 1018-1021(2020).

    [102] Fu Y Y, Shen C, Cao Y Y et al. Reversal of transmission and reflection based on acoustic metagratings with integer parity design[J]. Nature Communications, 10, 2326(2019). http://www.nature.com/articles/s41467-019-10377-9

    [103] Quan L. Ra'di Y, Sounas D L, et al. Maximum Willis coupling in acoustic scatterers[J]. Physical Review Letters, 120, 254301(2018).

    [104] Ni H Q, Fang X S, Hou Z L et al. High-efficiency anomalous splitter by acoustic meta-grating[J]. Physical Review B, 100, 104104(2019).

    [105] Hou Z L, Fang X S, Li Y et al. Highly efficient acoustic metagrating with strongly coupled surface grooves[J]. Physical Review Applied, 12, 034021(2019).

    [106] Chiang Y K, Oberst S, Melnikov A et al. Reconfigurable acoustic metagrating for high-efficiency anomalous reflection[J]. Physical Review Applied, 13, 064067(2020).

    [107] Wang Y H, Cheng Y, Liu X J. Modulation of acoustic waves by a broadband metagrating[J]. Scientific Reports, 9, 7271(2019). http://www.ncbi.nlm.nih.gov/pubmed/31086229

    [108] Fu Y Y, Cao Y Y, Xu Y D. Multifunctional reflection in acoustic metagratings with simplified design[J]. Applied Physics Letters, 114, 053502(2019).

    Zilan Deng, Fengjun Li, Tan Shi, Guoping Wang. Metagratings for Controlling Diffractive Optical Fields: Physics and Applications[J]. Acta Optica Sinica, 2021, 41(8): 0823011
    Download Citation