• Infrared and Laser Engineering
  • Vol. 51, Issue 1, 20210772 (2022)
Shuangyi Zhao, Qionghua Mo, Baiqian Wang, and Zhigang Zang*
Author Affiliations
  • College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
  • show less
    DOI: 10.3788/IRLA20210772 Cite this Article
    Shuangyi Zhao, Qionghua Mo, Baiqian Wang, Zhigang Zang. Research progress in inorganic perovskites white LEDs and visible light communication (Invited)[J]. Infrared and Laser Engineering, 2022, 51(1): 20210772 Copy Citation Text show less
    References

    [1] de Arquer F P Garcia, D V Talapin, V I Klimov, et al. Semiconductor quantum dots: Technological progress and future challenges. Science, 373, 640(2021).

    [2] F Zhang, J Song, B Han, et al. High-efficiency pure-color inorganic halide perovskite emitters for ultrahigh-definition displays: Progress for backlighting displays and electrically driven devices. Small Methods, 2, 1700382(2018).

    [3] A Dey, J Ye, A De, et al. State of the art and prospects for halide perovskite nanocrystals. ACS Nano, 15, 10775-10981(2021).

    [4] L N Quan, de Arquer F P Garcia, R P Sabatini, et al. Perovskites for light emission. Adv Mater, 30, e1801996(2018).

    [5] G Zhou, B Su, J Huang, et al. Broad-band emission in metal halide perovskites: mechanism, materials, and applications. Mater Sci Eng R, 141, 100548(2020).

    [6] W Lv, L Li, M Xu, et al. Improving the stability of metal halide perovskite quantum dots by encapsulation. Adv Mater, 31, e1900682(2019).

    [7] X K Liu, W Xu, S Bai, et al. Metal halide perovskites for light-emitting diodes. Nat Mater, 20, 10-21(2021).

    [8] S Zhao, W Cai, H Wang, et al. All-inorganic lead-free perov-skite(-Like) single crystals: Synthesis, properties, and appli-cations. Small Methods, 5, 2001308(2021).

    [9] B Yang, K Han. Ultrafast dynamics of self-trapped excitons in lead-free perovskite nanocrystals. J Phys Chem Lett, 12, 8256-8262(2021).

    [10] X Li, X Gao, X Zhang, et al. Lead-free halide perovskites for light emission: Recent advances and perspectives. Adv Sci, 8, 2003334(2021).

    [11] A Ren, H Wang, W Zhang, et al. Emerging light-emitting diodes for next-generation data communications. Nat Electron, 4, 559-572(2021).

    [12] Y Wei, Z Cheng, J Lin. An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs. Chem Soc Rev, 48, 310-350(2019).

    [13] Y Deng, X Lin, W Fang, et al. Deciphering exciton-generation processes in quantum-dot electroluminescence. Nat Commun, 11, 2309(2020).

    [14] X Wang, T Zhang, Y Lou, et al. All-inorganic lead-free perovskites for optoelectronic applications. Mater Chem Front, 3, 365-375(2019).

    [15] L Chouhan, S Ghimire, C Subrahmanyam, et al. Synthesis, optoelectronic properties and applications of halide perovskites. Chem Soc Rev, 49, 2869-2885(2020).

    [16] Y Fu, H Zhu, J Chen, et al. Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties. Nat Rev Mater, 4, 169-188(2019).

    [17] Z Nie, X Gao, Y Ren, et al. Harnessing hot phonon bottleneck in metal halide perovskite nanocrystals via interfacial electron-phonon coupling. Nano Lett, 20, 4610-4617(2020).

    [18] Y Ren, Z Nie, F Deng, et al. Deciphering the excited-state dynamics and multicarrier interactions in perovskite core-shell type hetero-nanocrystals. Nanoscale, 13, 292-299(2021).

    [19] S Zhao, Y Zhang, Z Zang. Room-temperature doping of ytterbium into efficient near-infrared emission CsPbBr1.5Cl1.5 perovskite quantum dots. Chem Commun, 56, 5811-5814(2020).

    [20] X Li, Y Wu, S Zhang, et al. CsPbX3 quantum dots for lighting and displays: Room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv Funct Mater, 26, 2435-2445(2016).

    [21] F Fang, W Chen, Y Li, et al. Employing polar solvent controlled ionization in precursors for synthesis of high-quality inorganic perovskite nanocrystals at room temperature. Adv Funct Mater, 28, 1706000(2018).

    [22] G Li, H Wang, T Zhang, et al. Solvent-polarity-engineered controllable synthesis of highly fluorescent cesium lead halide perovskite quantum dots and their use in white light-emitting diodes. Adv Funct Mater, 26, 8478-8486(2016).

    [23] Y Zhang, G Li, C She, et al. Room temperature preparation of highly stable cesium lead halide perovskite nanocrystals by ligand modification for white light-emitting diodes. Nano Res, 14, 2770-2775(2021).

    [24] F Li, Y Liu, H Wang, et al. Postsynthetic surface trap removal of CsPbX3(X=Cl, Br, or I) quantum dots via a ZnX2/hexane solu-tion toward an enhanced luminescence quantum yield. Chem Mater, 30, 8546-8554(2018).

    [25] H Lin, Q Wei, K W Ng, et al. Stable and efficient blue-emitting CsPbBr3 nanoplatelets with potassium bromide surface passivation. Small, 17, e2101359(2021).

    [26] C Sun, Y Zhang, C Ruan, et al. Efficient and stable white LEDs with silica-coated inorganic perovskite quantum dots. Adv Mater, 28, 10088-10094(2016).

    [27] H Guan, S Zhao, H Wang, et al. Room temperature synthesis of stable single silica-coated CsPbBr3 quantum dots combining tunable red emission of Ag-In-Zn-S for High-CRI white light-emitting diodes. Nano Energy, 67, 104279(2020).

    [28] Q Mo, C Chen, W Cai, et al. Room temperature synthesis of stable zirconia‐coated CsPbBr3 nanocrystals for white light‐emitting diodes and visible light communication. Laser Photonics Rev, 15, 2100278(2021).

    [29] H Hu, L Wu, Y Tan, et al. Interfacial synthesis of highly stable CsPbX3/oxide Janus nanoparticles. J Am Chem Soc, 140, 406-412(2018).

    [30] M Imran, B T Mai, L Goldoni, et al. Switchable anion exchange in polymer-encapsulated APbX3 nanocrystals delivers stable all-perovskite white emitters. ACS Energy Lett, 6, 2844-2853(2021).

    [31] J Y Sun, F T Rabouw, X F Yang, et al. Facile two-step synthesis of all-inorganic perovskite CsPbX3(X=Cl, Br, and I) zeolite-Y composite phosphors for potential backlight display application. Adv Funct Mater, 27, 1704371(2017).

    [32] H C Wang, S Y Lin, A C Tang, et al. Mesoporous silica particles integrated with all-inorganic CsPbBr3 perovskite quantum-dot nanocomposites (MP-PQDs) with high stability and wide color gamut used for backlight display. Angew Chem Int Ed, 55, 7924-7929(2016).

    [33] V Naresh, N Lee. Zn(II)-doped cesium lead halide perovskite nanocrystals with high quantum yield and wide color tunability for color-conversion light-emitting displays. ACS Appl Nano Mater, 3, 7621-7632(2020).

    [34] M Liu, G Zhong, Y Yin, et al. Aluminum-doped cesium lead bromide perovskite nanocrystals with stable blue photo-luminescence used for display backlight. Adv Sci, 4, 1700335(2017).

    [35] Y Xie, B Peng, I Bravic, et al. Highly efficient blue-emitting CsPbBr3 perovskite nanocrystals through neodymium doping. Adv Sci, 7, 2001698(2020).

    [36] D Yan, Q Mo, S Zhao, et al. Room temperature synthesis of Sn2+ doped highly luminescent CsPbBr3 quantum dots for high CRI white light-emitting diodes. Nanoscale, 13, 9740-9746(2021).

    [37] X Tang, W Chen, Z Liu, et al. Ultrathin, core-shell structured SiO2 coated Mn2+ -doped perovskite quantum dots for bright white light-emitting diodes. Small, 15, e1900484(2019).

    [38] G Pan, X Bai, W Xu, et al. Impurity ions codoped cesium lead halide perovskite nanocrystals with bright white light emission toward ultraviolet-white light-emitting diode. ACS Appl Mater Interfaces, 10, 39040-39048(2018).

    [39] S Zhao, Q Mo, W Cai, et al. Inorganic lead-free cesium copper chlorine nanocrystal for highly efficient and stable warm white light-emitting diodes. Photonics Res, 9, 187(2021).

    [40] J H Wei, J F Liao, X D Wang, et al. All-inorganic lead-free heterometallic Cs4MnBi2Cl12 perovskite single crystal with highly efficient orange emission. Matter, 3, 892-903(2020).

    [41] S Zhao, S Jiang, W Cai, et al. Intrinsic white-light emission from low-dimensional perovskites for white-light-emitting diodes with high-color-rendering index. Cell Rep Phys Sci, 2, 100585(2021).

    [42] B Zhou, Z Liu, S Fang, et al. Efficient white photoluminescence from self-trapped excitons in Sb3+/Bi3+-codoped Cs2NaInCl6 double perovskites with tunable dual-emission. ACS Energy Lett, 6, 3343-3351(2021).

    [43] J Luo, X Wang, S Li, et al. Efficient and stable emission of warm-white light from lead-free halide double perovskites. Nature, 563, 541-545(2018).

    [44] D Yan, T Shi, Z Zang, et al. Ultrastable CsPbBr3 perovskite quantum dot and their enhanced amplified spontaneous emission by surface ligand modification. Small, 15, e1901173(2019).

    [45] H Shao, X Bai, H Cui, et al. White light emission in Bi3+/Mn2+ ion co-doped CsPbCl3 perovskite nanocrystals. Nanoscale, 10, 1023-1029(2018).

    [46] T Jun, K Sim, S Iimura, et al. Lead-free highly efficient blue-emitting Cs3Cu2I5 with 0 D electronic structure. Adv Mater, 30, e1804547(2018).

    [47] H Yin, Q Kong, R Zhang, et al. Lead-free rare-earth double perovskite Cs2AgIn1−γxBixLaγCl6 nanocrystals with highly efficient warm-white emission. Sci China Mater, 64, 2667-2674(2021).

    [48] M Cong, B Yang, F Hong, et al. Self-trapped exciton engineering for white-light emission in colloidal lead-free double perovskite nanocrystals. Sci Bull, 65, 1078-1084(2020).

    [49] A Karmakar, G M Bernard, A Meldrum, et al. Tailorable indirect to direct band-gap double perovskites with bright white-light emission: Decoding chemical structure using solid-state NMR. J Am Chem Soc, 142, 10780-10793(2020).

    [50] E P Yao, Z Yang, L Meng, et al. High-brightness blue and white LEDs based on inorganic perovskite nanocrystals and their composites. Adv Mater, 23, 1606859(2017).

    [51] J Mao, H Lin, F Ye, et al. All-perovskite emission architecture for white light-emitting diodes. ACS Nano, 12, 10486-10492(2018).

    [52] R Sun, P Lu, D Zhou, et al. Samarium-doped metal halide perovskite nanocrystals for single-component electroluminescent white light-emitting diodes. ACS Energy Lett, 5, 2131-2139(2020).

    [53] J Chen, J Wang, X Xu, et al. Efficient and bright white light-emitting diodes based on single-layer heterophase halide perovskites. Nat Photon, 15, 238-244(2020).

    [54] Z Ma, Z Shi, D Yang, et al. High color-rendering index and stable white light-emitting diodes by assembling two broadband emissive self-trapped excitons. Adv Mater, 33, e2001367(2021).

    [55] H Chen, L Zhu, C Xue, et al. Efficient and bright warm-white electroluminescence from lead-free metal halides. Nat Commun, 12, 1421(2021).

    [56] I Dursun, C Shen, M R Parida, et al. Perovskite nanocrystals as a color converter for visible light communication. ACS Photonics, 3, 1150-1156(2016).

    [57] S Mei, X Liu, W Zhang, et al. High-bandwidth white-light system combining a micro-LED with perovskite quantum dots for visible light communication. ACS Appl Mater Interfaces, 10, 5641-5648(2018).

    [58] X Li, W Cai, H Guan, et al. Highly stable CsPbBr3 quantum dots by silica-coating and ligand modification for white light-emitting diodes and visible light communication. Chem Eng J, 419, 129551(2021).

    [59] Z Wang, Z Wei, W Cai, et al. Encapsulation-enabled perovskite−PMMA films combining a micro-LED for high-speed white-light communication. ACS Appl Mater Interfaces, 13, 54143-54151(2021).

    [60] S Zhao, C Chen, Y Cai, et al. Efficiently luminescent and stable lead-free Cs3Cu2Cl5@silica nanocrystals for white light-emitting diodes and communication. Adv Opt Mater, 9, 2100307(2021).

    [61] Z Ma, X Li, C Zhang, et al. CsPb(Br/I)3 perovskite nanocrystals for hybrid GaN-based high-bandwidth white light-emitting diodes. ACS Appl Nano Mater, 4, 8383-8389(2021).

    CLP Journals

    [1] Chunyang Liu, Yujie Sheng, Jinyang Tong, Xingqiao Lu, Changming Yu, Yining Mu, Xuewen Wang. Low-dimensional flexible light-emitting device based on quantum dots & nanowire composite[J]. Infrared and Laser Engineering, 2023, 52(10): 20230433

    Shuangyi Zhao, Qionghua Mo, Baiqian Wang, Zhigang Zang. Research progress in inorganic perovskites white LEDs and visible light communication (Invited)[J]. Infrared and Laser Engineering, 2022, 51(1): 20210772
    Download Citation