• Photonics Research
  • Vol. 10, Issue 5, 1271 (2022)
Zhuohui Yang1, Zhengqing Ding1, Lin Liu1, Hancheng Zhong1, Sheng Cao1, Xinzhong Zhang1, Shizhe Lin1, Xiaoying Huang1, Huadi Deng1, Ying Yu1、*, and Siyuan Yu1、2
Author Affiliations
  • 1State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
  • 2e-mail: yusy@mail.sysu.edu.cn
  • show less
    DOI: 10.1364/PRJ.454200 Cite this Article Set citation alerts
    Zhuohui Yang, Zhengqing Ding, Lin Liu, Hancheng Zhong, Sheng Cao, Xinzhong Zhang, Shizhe Lin, Xiaoying Huang, Huadi Deng, Ying Yu, Siyuan Yu. High-performance distributed feedback quantum dot lasers with laterally coupled dielectric gratings[J]. Photonics Research, 2022, 10(5): 1271 Copy Citation Text show less
    References

    [1] D. Botez, G. J. Herskowitz. Components for optical communications systems: a review. Proc. IEEE, 68, 689-731(1980).

    [2] O. Brox, F. Bugge, A. Mogilatenko, E. Luvsandamdin, A. Wicht, H. Wenzel, G. Erbert. Distributed feedback lasers in the 760 to 810  nm range and epitaxial grating design. Semicond. Sci. Technol., 29, 095018(2014).

    [3] E. Di Gaetano, S. Watson, E. McBrearty, M. Sorel, D. J. Paul. Sub-megahertz linewidth 780.24  nm distributed feedback laser for 87Rb applications. Opt. Lett., 45, 3529-3532(2020).

    [4] V. Schkolnik, O. Hellmig, A. Wenzlawski, J. Grosse, A. Kohfeldt, K. Döringshoff, A. Wicht, P. Windpassinger, K. Sengstock, C. Braxmaier, M. Krutzik, A. Peters. A compact and robust diode laser system for atom interferometry on a sounding rocket. Appl. Phys. B, 122, 217(2016).

    [5] Y. He, H. An, J. Cai, C. Galstad, S. Macomber, M. Kanskar. 808 nm broad area DFB laser for solid-state laser pumping application. Electron. Lett., 45, 163-164(2009).

    [6] S. Stephan, D. Frederic, A. Markus-Christian. Novel InP- and GaSb-based light sources for the near to far infrared. Semicond. Sci. Technol., 31, 113005(2016).

    [7] M. Hoppe, C. Aßmann, S. Schmidtmann, T. Milde, M. Honsberg, T. Schanze, J. Sacher. GaSb-based digital distributed feedback filter laser diodes for gas sensing applications in the mid-infrared region. J. Opt. Soc. Am. B, 38, B1-B8(2021).

    [8] S. Najda, P. Perlin, M. Leszczyński, T. Slight, W. Meredith, M. Schemmann, H. Moseley, J. Woods, R. Valentine, S. Kalra, P. Mossey, E. Theaker, M. Macluskey, G. Mimnagh, W. Mimnagh. A multi-wavelength (u.v. to visible) laser system for early detection of oral cancer. Proc. SPIE, 9328, 932809(2015).

    [9] T. Miyajima, T. Tojyo, T. Asano, K. Yanashima, S. Kijima, T. Hino, M. Takeya, S. Uchida, S. Tomiya, K. Funato, T. Asatsuma, T. Kobayashi, M. Ikeda. GaN-based blue laser diodes. J. Phys.: Condens. Matter, 13, 7099(2001).

    [10] J. C. Palais. Fiber Optic Communications(1988).

    [11] T. Sudo, Y. Matsui, G. Carey, A. Verma, D. Wang, V. Lowalekar, M. Kwakernaak, F. Khan, N. Dalida, R. Patel, A. Nickel, B. Young, J. Zeng, Y. L. Ha, C. Roxlo. Challenges and opportunities of directly modulated lasers in future data center and 5G networks. Optical Fiber Communications Conference and Exhibition (OFC), 1-3(2021).

    [12] C. P. Hsu, B. Li, B. Solano-Rivas, A. R. Gohil, P. H. Chan, A. D. Moore, V. Donzella. A review and perspective on optical phased array for automotive LiDAR. IEEE J. Sel. Top. Quantum Electron., 27, 8300416(2021).

    [13] D. N. Hutchison, J. Sun, J. K. Doylend, R. Kumar, J. Heck, W. Kim, C. T. Phare, A. Feshali, H. Rong. High-resolution aliasing-free optical beam steering. Optica, 3, 887-890(2016).

    [14] M.-C. Amann, M. Ortsiefer. Long-wavelength (λ1.3μm) InGaAlAs–InP vertical-cavity surface-emitting lasers for applications in optical communication and sensing. Phys. Status Solidi A, 203, 3538-3544(2006).

    [15] A. Liu, P. Wolf, J. A. Lott, D. Bimberg. Vertical-cavity surface-emitting lasers for data communication and sensing. Photon. Res., 7, 121-136(2019).

    [16] H. Y. Liu, S. L. Liew, T. Badcock, D. J. Mowbray, M. S. Skolnick, S. K. Ray, T. L. Choi, K. M. Groom, B. Stevens, F. Hasbullah, C. Y. Jin, M. Hopkinson, R. A. Hogg. p-doped 1.3 μm InAs/GaAs quantum-dot laser with a low threshold current density and high differential efficiency. Appl. Phys. Lett., 89, 073113(2006).

    [17] T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, Y. Arakawa. Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum-dot lasers. The European Conference on Lasers and Electro-Optics, PDA_1(2011).

    [18] Y.-G. Zhou, C. Zhou, C.-F. Cao, J.-B. Du, Q. Gong, C. Wang. Relative intensity noise of InAs quantum dot lasers epitaxially grown on Ge. Opt. Express, 25, 28817-28824(2017).

    [19] M. Liao, S. Chen, Z. Liu, Y. Wang, L. Ponnampalam, Z. Zhou, J. Wu, M. Tang, S. Shutts, Z. Liu, P. M. Smowton, S. Yu, A. Seeds, H. Liu. Low-noise 1.3 μm InAs/GaAs quantum dot laser monolithically grown on silicon. Photon. Res., 6, 1062-1066(2018).

    [20] A. Capua, L. Rozenfeld, V. Mikhelashvili, G. Eisenstein, M. Kuntz, M. Laemmlin, D. Bimberg. Direct correlation between a highly damped modulation response and ultra low relative intensity noise in an InAs/GaAs quantum dot laser. Opt. Express, 15, 5388-5393(2007).

    [21] D. A. I. Marpaung. High dynamic range analog photonic links(2009).

    [22] B. Dong, J.-D. Chen, F.-Y. Lin, J. C. Norman, J. E. Bowers, F. Grillot. Dynamic and nonlinear properties of epitaxial quantum-dot lasers on silicon operating under long- and short-cavity feedback conditions for photonic integrated circuits. Phys. Rev. A, 103, 033509(2021).

    [23] H. Huang, J. Duan, B. Dong, J. Norman, D. Jung, J. E. Bowers, F. Grillot. Epitaxial quantum dot lasers on silicon with high thermal stability and strong resistance to optical feedback. APL Photon., 5, 016103(2020).

    [24] B. Dong, J. Duan, H. Huang, J. C. Norman, K. Nishi, K. Takemasa, M. Sugawara, J. E. Bowers, F. Grillot. Dynamic performance and reflection sensitivity of quantum dot distributed feedback lasers with large optical mismatch. Photon. Res., 9, 1550-1558(2021).

    [25] J. C. Norman, D. Jung, Y. Wan, J. E. Bowers. Perspective: the future of quantum dot photonic integrated circuits. APL Photon., 3, 030901(2018).

    [26] C. Hantschmann, Z. Liu, M. Tang, S. Chen, A. J. Seeds, H. Liu, I. H. White, R. V. Penty. Theoretical study on the effects of dislocations in monolithic III-V lasers on silicon. J. Lightwave Technol., 38, 4801-4807(2020).

    [27] J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, J. E. Bowers. A review of high-performance quantum dot lasers on silicon. IEEE J. Quantum Electron., 55, 2000511(2019).

    [28] S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, H. Liu. Electrically pumped continuous-wave III–V quantum dot lasers on silicon. Nat. Photonics, 10, 307-311(2016).

    [29] J. C. Norman, R. P. Mirin, J. E. Bowers. Quantum dot lasers—history and future prospects. J. Vac. Sci. Technol. A, 39, 020802(2021).

    [30] D. Jung, R. Herrick, J. Norman, K. Turnlund, C. Jan, K. Feng, A. C. Gossard, J. E. Bowers. Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si. Appl. Phys. Lett., 112, 153507(2018).

    [31] T. Septon, A. Becker, S. Gosh, G. Shtendel, V. Sichkovskyi, F. Schnabel, A. Sengül, M. Bjelica, B. Witzigmann, J. P. Reithmaier, G. Eisenstein. Large linewidth reduction in semiconductor lasers based on atom-like gain material. Optica, 6, 1071-1077(2019).

    [32] Z. Lu, K. Zeb, J. Liu, E. Liu, L. Mao, P. Poole, M. Rahim, G. Pakulski, P. Barrios, W. Jiang, D. Poitras. Quantum dot semiconductor lasers for 5G and beyond wireless networks. Proc. SPIE, 11690, 116900N(2021).

    [33] K. Takada, Y. Tanaka, T. Matsumoto, M. Ekawa, H. Z. Song, Y. Nakata, M. Yamaguchi, K. Nishi, T. Yamamoto, M. Sugawara, Y. Arakawa. Wide-temperature-range 10.3  Gbit/s operations of 1.3  μm high-density quantum-dot DFB lasers. Electron. Lett., 47, 206-208(2011).

    [34] Y. Wan, J. C. Norman, Y. Tong, M. J. Kennedy, W. He, J. Selvidge, C. Shang, M. Dumont, A. Malik, H. K. Tsang, A. C. Gossard, J. E. Bowers. 1.3  μm quantum dot-distributed feedback lasers directly grown on (001) Si. Laser Photon. Rev., 14, 2000037(2020).

    [35] C. B. Cooper, S. Salimian, H. F. Macmillan. Reactive ion etch characteristics of thin InGaAs and AlGaAs stop-etch layers. J. Electron. Mater., 18, 619-622(1989).

    [36] G. C. Desalvo, W. F. Tseng, J. Comas. ChemInform abstract: etch rates and selectivities of citric acid/hydrogen peroxide on GaAs, Al0.3Ga0.7As, In0.2Ga0.8As, In0.53Ga0.47As, In0.52Al0.48As, and InP. ChemInform, 23, 309(1992).

    [37] Q. Li, X. Wang, Z. Zhang, H. Chen, Y. Huang, C. Hou, J. Wang, R. Zhang, J. Ning, J. Min, C. Zheng. Development of modulation p-doped 1310  nm InAs/GaAs quantum dot laser materials and ultrashort cavity Fabry–Perot and distributed-feedback laser diodes. ACS Photon., 5, 1084-1093(2018).

    [38] S. Forouhar, R. M. Briggs, C. Frez, K. J. Franz, A. Ksendzov. High-power laterally coupled distributed-feedback GaSb-based diode lasers at 2  μm wavelength. Appl. Phys. Lett., 100, 031107(2012).

    [39] S. Masui, K. Tsukayama, T. Yanamoto, T. Kozaki, S.-I. Nagahama, T. Mukai. CW operation of the first-order AlInGaN 405  nm distributed feedback laser diodes. Jpn. J. Appl. Phys., 45, L1223-L1225(2006).

    [40] Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu, J. Wu, W. Li, I. Ross, A. J. Seeds, H. Liu, S. Yu. Monolithic quantum-dot distributed feedback laser array on silicon. Optica, 5, 528-533(2018).

    [41] C. A. Yang, S. W. Xie, Y. Zhang, J. M. Shang, S. S. Huang, Y. Yuan, F. H. Shao, Y. Zhang, Y. Q. Xu, Z. C. Niu. High-power, high-spectral-purity GaSb-based laterally coupled distributed feedback lasers with metal gratings emitting at 2  μm. Appl. Phys. Lett., 114, 021102(2019).

    [42] A. Laakso, J. Karinen, M. Dumitrescu. Modeling and design particularities for distributed feedback lasers with laterally-coupled ridge-waveguide surface gratings. Proc. SPIE, 7933, 79332K(2011).

    [43] W. Streifer, D. Scifres, R. Burnham. Coupling coefficients for distributed feedback single- and double-heterostructure diode lasers. IEEE J. Quantum Electron., 11, 867-873(1975).

    [44] W.-Y. Choi, J. C. Chen, C. G. Fonstad. Evaluation of coupling coefficients for laterally-coupled distributed feedback lasers. Jpn. J. Appl. Phys., 35, 4654-4659(1996).

    [45] J. Duan, H. Huang, B. Dong, J. C. Norman, Z. Zhang, J. E. Bowers, F. Grillot. Dynamic and nonlinear properties of epitaxial quantum dot lasers on silicon for isolator-free integration. Photon. Res., 7, 1222-1228(2019).

    [46] F. Grillot, B. Thedrez, D. Guang-Hua. Feedback sensitivity and coherence collapse threshold of semiconductor DFB lasers with complex structures. IEEE J. Quantum Electron., 40, 231-240(2004).

    [47] Q. Zou, K. Merghem, S. Azouigui, A. Martinez, A. Accard, N. Chimot, F. Lelarge, A. Ramdane. Feedback-resistant p-type doped InAs/InP quantum-dash distributed feedback lasers for isolator-free 10 Gb/s transmission at 1.55 μm. Appl. Phys. Lett., 97, 231115(2010).

    [48] H. Su, L. Zhang, A. L. Gray, R. Wang, T. C. Newell, K. J. Malloy, L. F. Lester. High external feedback resistance of laterally loss-coupled distributed feedback quantum dot semiconductor lasers. IEEE Photon. Technol. Lett., 15, 1504-1506(2003).

    [49] H. Su, L. F. Lester. Dynamic properties of quantum dot distributed feedback lasers: high speed, linewidth and chirp. J. Phys. D, 38, 2112-2118(2005).

    [50] S. Azouigui, D.-Y. Cong, A. Martinez, K. Merghem, Q. Zou, J.-G. Provost, B. Dagens, M. Fischer, F. Gerschütz, J. Koeth, I. Krestnikov, A. Kovsh, A. Ramdane. Temperature dependence of dynamic properties and tolerance to optical feedback of high-speed 1.3  μm DFB quantum-dot lasers. IEEE Photon. Technol. Lett., 23, 582-584(2011).

    [51] M. Stubenrauch, G. Stracke, D. Arsenijević, A. Strittmatter, D. Bimberg. 15  Gb/s index-coupled distributed-feedback lasers based on 1.3  μm InGaAs quantum dots. Appl. Phys. Lett., 105, 011103(2014).

    [52] M. Matsuda, N. Yasuoka, K. Nishi, K. Takemasa, T. Yamamoto, M. Sugawara, Y. Arakawa. Low-noise characteristics on 1.3-μm-wavelength quantum-dot DFB lasers under external optical feedback. IEEE International Semiconductor Laser Conference (ISLC), 1-2(2018).

    [53] S. Uvin, S. Kumari, A. De Groote, S. Verstuyft, G. Lepage, P. Verheyen, J. Van Campenhout, G. Morthier, D. Van Thourhout, G. Roelkens. 1.3  μm InAs/GaAs quantum dot DFB laser integrated on a Si waveguide circuit by means of adhesive die-to-wafer bonding. Opt. Express, 26, 18302-18309(2018).

    [54] Y. Wan, C. Xiang, J. Guo, R. Koscica, M. J. Kennedy, J. Selvidge, Z. Zhang, L. Chang, W. Xie, D. Huang, A. C. Gossard, J. E. Bowers. High speed evanescent quantum-dot lasers on Si. Laser Photon. Rev., 15, 210057(2021).

    [55] D. Liang, S. Srinivasan, A. Descos, C. Zhang, G. Kurczveil, Z. Huang, R. Beausoleil. High-performance quantum-dot distributed feedback laser on silicon for high-speed modulations. Optica, 8, 591-593(2021).

    [56] G. Liu, G. Zhao, J. Sun, D. Gao, Q. Lu, W. Guo. Experimental demonstration of DFB lasers with active distributed reflector. Opt. Express, 26, 29784-29795(2018).

    Zhuohui Yang, Zhengqing Ding, Lin Liu, Hancheng Zhong, Sheng Cao, Xinzhong Zhang, Shizhe Lin, Xiaoying Huang, Huadi Deng, Ying Yu, Siyuan Yu. High-performance distributed feedback quantum dot lasers with laterally coupled dielectric gratings[J]. Photonics Research, 2022, 10(5): 1271
    Download Citation