• Acta Optica Sinica
  • Vol. 21, Issue 3, 305 (2001)
[in Chinese]1, [in Chinese]1, [in Chinese]1, [in Chinese]1, [in Chinese]1, [in Chinese]1, [in Chinese]1, and [in Chinese]2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: Cite this Article Set citation alerts
    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Violet Laser Output Based on Frequency Doubling of Diode Laser Using ZCTC Crystal[J]. Acta Optica Sinica, 2001, 21(3): 305 Copy Citation Text show less
    References

    [1] Webjorn J, Waarts R G. Frequency doubling offers advantages for bule lasers. Laser Focus World, 1998, 34(5):135~142

    [2] Nakamura S, Senoh M, Shin-ichi Nagahama et al.. InGaN/GaN/AlGaN-based violet laser diodes with a lifetime of more than 10,000 hours, 2nd Intern. Symp. on Blue Laser and Light Emitting Diodes, Chiba, Japan, Sept. 29, 1998. 371~376

    [3] Landwehr G. Gallium-nitride versus zinc-selenide lasers: A real issue , 2nd Intern. Symp. on Blue Laser and Light Emitting Diodes, Chiba, Japan, 1998. 3~8

    [4] Chun M K, Goldberg L, Weller J F. Second harmonic generation at 421 nm using injection-locked GaAlAs laser array and KNbO3. Appl. Phys. Lett., 1988, 53(13):1170~1171

    [5] Goldberg L, Chun M K. Efficient generation at 421 nm by resonantly enhanced doubling of GaAlAs laser diode array emission. Appl. Phys. Lett., 1989,55(3):218~220

    [6] Dixon G J, Tanner C E, Wieman C E. 432 nm source based on efficient second-harmonic generation of GaAlAs diode-laser radiation in a self-locking external resonant cavity. Opt. Lett., 1989, 14(14):731~733

    [7] Kozlovsky W J, Lenth W, Latta E et al.. Generation of 41 mW of blue radiation by frequency doubling of a GaAlAs diode laser. Appl. Phys. Lett., 1990, 56(23):2291

    [8] Ouwerkerk M. Potassium lithium niobate: A frequency doubler for (Al,Ga)As lasers. Adv. Mater., 1991, 3(7/8):399~401

    [9] Zhang N, Yuan D R, Tao X T et al.. Phase-matched second harmonic generation in new organic MHBA crystal. Opt. Commun., 1993, 99(3,4):247~251

    [10] Kozlovsky W J, Risk W P, Lenth W. Blue light generation by resonator-enhanced frequency doubling of an extended cavity diode laser. Appl. Phys. Lett., 1994, 65(5):525~527

    [11] Hayasaka K, Watanbe M, Imajo H. Tunable 397 nm light source for laser cooling of Ca ions based on frequency doubling of diode laser. Jpn. J. Appl. Phys., 1994, 33(3B):1595

    [12] Zimmerman C, Vuletic V, Hemmerich A et al.. All solid state laser source for tunable blue and ultraviolet radiation. Appl. Phys. Lett., 1995, 66(18):2318~2320

    [13] Beier B, Woll D, Scheidt M et al.. Second harmonic generation of the output of an AlGaAs diode oscillator amplifier system in critically phase matched LBO and BBO. Appl. Phys. Lett., 1997, 71(3):315~317

    [14] Bhawalkar J D, Mao Y, Po H et al.. High-power 390 nm laser source based on efficient frequency doubling of a tapered diode laser in an external resonant cavity. Opt. Lett., 1999, 24(12):823~825

    [15] Yuan Duorong, Xu Dong, Liu Mingguo et al.. Structure and properties of a complex crystal for laser diode frequency doubling: Cadmium mercury thiocyanate. Appl. Phys. Lett., 1997, 70(5):544~546

    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Violet Laser Output Based on Frequency Doubling of Diode Laser Using ZCTC Crystal[J]. Acta Optica Sinica, 2001, 21(3): 305
    Download Citation