• Laser & Optoelectronics Progress
  • Vol. 56, Issue 20, 202410 (2019)
Wenxue Zhang1、2, Xiaorong Zhang1、2, Chengbing Qin1、2、*, and Liantuan Xiao1、2
Author Affiliations
  • 1State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, Shanxi 0 30006, China
  • 2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 0 30006, China
  • show less
    DOI: 10.3788/LOP56.202410 Cite this Article Set citation alerts
    Wenxue Zhang, Xiaorong Zhang, Chengbing Qin, Liantuan Xiao. Continuous Laser Induced Photoluminescence Enhancement of Au Nanorods[J]. Laser & Optoelectronics Progress, 2019, 56(20): 202410 Copy Citation Text show less
    References

    [1] Chung H S, Eaton W A. Single-molecule fluorescence probes dynamics of barrier crossing[J]. Nature, 502, 685-688(2013). http://pubmedcentralcanada.ca/pmcc/articles/PMC4009947/

    [2] Chiang C L, Xu C, Han Z M et al. Real-space imaging of molecular structure and chemical bonding by single-molecule inelastic tunneling probe[J]. Science, 344, 885-888(2014). http://europepmc.org/abstract/med/24855265

    [3] Yang H, Luo G B, Karnchanaphanurach P et al. Protein conformational dynamics probed by single-molecule electron transfer[J]. Science, 302, 262-266(2003). http://www.jstor.org/stable/3835374

    [4] Zhou T, Luo T, Song J et al. Phasor-fluorescence lifetime imaging microscopy analysis to monitor intercellular drug release from a pH-sensitive polymeric nanocarrier[J]. Analytical Chemistry, 90, 2170-2177(2018). http://www.ncbi.nlm.nih.gov/pubmed/29336550

    [5] Urano Y, Asanuma D, Hama Y et al. Selective molecular imaging of viable cancer cells with pH-activatable fluorescence probes[J]. Nature Medicine, 15, 104-109(2009). http://rheumatology.oxfordjournals.org/external-ref?access_num=19029979&link_type=MED

    [6] Jameson D M, Ross J A. Fluorescence polarization/anisotropy in diagnostics and imaging[J]. Chemical Reviews, 110, 2685-2708(2010). http://www.ncbi.nlm.nih.gov/pubmed/20232898

    [7] Peng M, Bai Z C, Zhang Y et al. Protein detection chip based on quantum dot fluorescence quenching method[J]. Laser & Optoelectronics Progress, 56, 062601(2019).

    [8] Huang X M, Deng X. Preparation of fluorescent carbon quantum dots and its application as probe for detection of nitrate ions[J]. Laser & Optoelectronics Progress, 56, 071602(2019).

    [9] Wegner K D, Hildebrandt N. Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors[J]. Chemical Society Reviews, 44, 4792-4834(2015). http://www.tandfonline.com/servlet/linkout?suffix=CIT0086&dbid=16&doi=10.1080%2F14686996.2016.1190257%40tsta20.2016.17.issue-Bio1&key=10.1039%2FC4CS00532E

    [10] Chinen A B, Guan C M, Ferrer J R et al. Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence[J]. Chemical Reviews, 115, 10530-10574(2015). http://pubs.acs.org/doi/pdf/10.1021/acs.chemrev.5b00321

    [11] Vogelsang J, Kasper R, Steinhauer C et al. A reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes[J]. Angewandte Chemie International Edition, 47, 5465-5469(2008). http://europepmc.org/abstract/med/18601270

    [12] Galland C, Ghosh Y, Steinbrück A et al. Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots[J]. Nature, 479, 203-207(2011). http://www.ncbi.nlm.nih.gov/pubmed/22071764

    [13] Sperling R A, Gil P R, Zhang F et al. Biological applications of gold nanoparticles[J]. Chemical Society Reviews, 37, 1896-1908(2008). http://pubs.acs.org/servlet/linkout?suffix=ref1/cit1&dbid=16&doi=10.1021%2Fla403546c&key=10.1039%2Fb712170a

    [14] He H, Xie C, Ren J C. Nonbleaching fluorescence of gold nanoparticles and its applications in cancer cell imaging[J]. Analytical Chemistry, 80, 5951-5957(2008). http://pubs.acs.org/doi/pdf/10.1021/ac8005796

    [15] Yang Y D, Xu J H, Yang L M et al. Optical properties of gold nanorod and its application in biological imaging and photothermal therapy[J]. Laser & Optoelectronics Progress, 47, 071702(2010).

    [16] Wang Q Y, Lu G W, Hou L et al. Fluorescence correlation spectroscopy near individual gold nanoparticle[J]. Chemical Physics Letters, 503, 256-261(2011). http://www.sciencedirect.com/science/article/pii/S000926141100011X

    [17] Yorulmaz M, Khatua S, Zijlstra P et al. Luminescence quantum yield of single gold nanorods[J]. Nano Letters, 12, 4385-4391(2012). http://www.ncbi.nlm.nih.gov/pubmed/22775068

    [18] Gaiduk A, Yorulmaz M, Orrit M. Correlated absorption and photoluminescence of single gold nanoparticles[J]. ChemPhysChem, 12, 1536-1541(2011). http://www.ncbi.nlm.nih.gov/pubmed/21500336

    [19] Yuan H F, Khatua S, Zijlstra P et al. Thousand-fold enhancement of single-molecule fluorescence near a single gold nanorod[J]. Angewandte Chemie International Edition, 52, 1217-1221(2013).

    [20] Zhai Y R, Meng L Y, Xu L J et al. Strong fluorescence enhancement with silica-coated Au nanoshell dimers[J]. Plasmonics, 12, 263-269(2017). http://link.springer.com/article/10.1007/s11468-016-0259-5

    [21] Han F, Guan Z P, Tan T S et al. Size-dependent two-photon excitation photoluminescence enhancement in coupled noble-metal nanoparticles[J]. ACS Applied Materials & Interfaces, 4, 4746-4751(2012). http://pubs.acs.org/doi/abs/10.1021/am301121k

    [22] Guan Z P, Gao N Y, Jiang X F et al. Huge enhancement in two-photon photoluminescence of Au nanoparticle clusters revealed by single-particle spectroscopy[J]. Journal of the American Chemical Society, 135, 7272-7277(2013). http://europepmc.org/abstract/med/23607514

    [23] Tsai M F. Chang S H G, Cheng F Y, et al. Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy[J]. ACS Nano, 7, 5330-5342(2013).

    [24] Harris-Birtill D, Singh M, Zhou Y et al. Gold nanorod reshaping in vitro and in vivo using a continuous wave laser[J]. PLoS One, 12, e0185990(2017). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5646757/

    [25] Qin C B, Zhang X R, He W J et al. Continuous-wave laser-induced welding and giant photoluminescence enhancement of Au nanospheres[J]. Optics Express, 27, 2886-2898(2019).

    [26] Ruan Q F, Shao L, Shu Y W et al. Growth of monodisperse gold nanospheres with diameters from 20 nm to 220 nm and their core/satellite nanostructures[J]. Advanced Optical Materials, 2, 65-73(2014). http://onlinelibrary.wiley.com/doi/10.1002/adom.201300359/full

    [27] Qiao Z X, Qin C B, He W J et al. Lifetime modulation of graphene oxide film by laser direct writing for the fabrication of micropatterns[J]. Acta Physica Sinica, 67, 066802(2018).

    [28] Li B, Zhang G F, Jing M Y et al. Single molecule optical- probes measured power law distribution of polymer dynamics[J]. Acta Physica Sinica, 65, 218201(2016).

    [29] Lu G W, Hou L, Zhang T Y et al. Plasmonic sensing via photoluminescence of individual gold nanorod[J]. The Journal of Physical Chemistry C, 116, 25509-25516(2012). http://pubs.acs.org/doi/pdf/10.1021/jp309450b

    [30] Zhang T S, Gao N Y, Li S et al. Single-particle spectroscopic study on fluorescence enhancement by plasmon coupled gold nanorod dimers assembled on DNA origami[J]. The Journal of Physical Chemistry Letters, 6, 2043-2049(2015). http://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.5b00747

    [31] Fang Y, Chang W S, Willingham B et al. Plasmon emission quantum yield of single gold nanorods as a function of aspect ratio[J]. ACS Nano, 6, 7177-7184(2012). http://www.ncbi.nlm.nih.gov/pubmed/22830934

    [32] Cai Y Y, Liu J G, Tauzin L J et al. Photoluminescence of gold nanorods: Purcell effect enhanced emission from hot carriers[J]. ACS Nano, 12, 976-985(2018). http://pubs.acs.org/doi/10.1021/acsnano.7b07402

    [33] Ye X C, Gao Y Z, Chen J et al. Seeded growth of monodisperse gold nanorods using bromide-free surfactant mixtures[J]. Nano Letters, 13, 2163-2171(2013). http://pubs.acs.org/doi/abs/10.1021/nl400653s

    [34] Okuno Y, Nishioka K, Kiya A et al. Uniform and controllable preparation of Au-Ag core-shell nanorods using anisotropic silver shell formation on gold nanorods[J]. Nanoscale, 2, 1489-1493(2010).

    [35] Wang L B, Zhu Y Y, Xu L G et al. Side-by-side and end-to-end gold nanorod assemblies for environmental toxin sensing[J]. Angewandte Chemie International Edition, 49, 5472-5475(2010).

    [36] McLintock A, Hunt N, Wark A W. Controlled side-by-side assembly of gold nanorods and dye molecules into polymer-wrapped SERRS-active clusters[J]. Chemical Communications, 47, 3757-3759(2011).

    [37] Zhang R, Xiao X Z, Lü C et al. Assembling of gold nanorods by femtosecond laser fabrication[J]. Acta Physica Sinica, 63, 014206(2014).

    Wenxue Zhang, Xiaorong Zhang, Chengbing Qin, Liantuan Xiao. Continuous Laser Induced Photoluminescence Enhancement of Au Nanorods[J]. Laser & Optoelectronics Progress, 2019, 56(20): 202410
    Download Citation