• Photonics Research
  • Vol. 8, Issue 8, 1268 (2020)
Lipeng Feng1, Yan Li1、*, Sihan Wu1, Xun Guan2, Chen Yang3, Weijun Tong3, Wei Li1, Jifang Qiu1, Xiaobin Hong1, Yong Zuo1, Hongxiang Guo1, Erhu Chen4, and Jian Wu1
Author Affiliations
  • 1State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • 2Center for Optics, Photonics, and Lasers, Universite Laval, Quebec, QC G1V 0A6, Canada
  • 3State Key Laboratory of Optical Fibre and Cable Manufacture Technology, Yangtze Optical Fibre and Cable Joint Stock Limited Company, Wuhan 430074, China
  • 4Beijing Institute of Tracking and Telecommunications Technology, Beijing 100094, China
  • show less
    DOI: 10.1364/PRJ.385007 Cite this Article Set citation alerts
    Lipeng Feng, Yan Li, Sihan Wu, Xun Guan, Chen Yang, Weijun Tong, Wei Li, Jifang Qiu, Xiaobin Hong, Yong Zuo, Hongxiang Guo, Erhu Chen, Jian Wu. All-fiber generation of arbitrary cylindrical vector beams on the first-order Poincaré sphere[J]. Photonics Research, 2020, 8(8): 1268 Copy Citation Text show less
    References

    [1] A. Kumar, A. K. Ghatak. Poincaré sphere representation of polarized light. Polarization of Light with Applications in Optical Fibers(2011).

    [2] Q. Zhan. Cylindrical vector beams: from mathematical concepts to applications. Adv. Opt. Photon., 1, 1-57(2009).

    [3] S. Ramachandran, P. Kristensen. Optical vortices in fiber. Nanophotonics, 2, 455-474(2013).

    [4] G. Milione, H. Sztul, D. Nolan, R. Alfano. Higher-order Poincarésphere, Stokes parameters, and the angular momentum of light. Phys. Rev. Lett., 107, 053601(2011).

    [5] M. Padgett, R. Bowman. Tweezers with a twist. Nat. Photonics, 5, 343-348(2011).

    [6] M. Gecevičius, R. Drevinskas, M. Beresna, P. G. Kazansky. Single beam optical vortex tweezers with tunable orbital angular momentum. Appl. Phys. Lett., 104, 231110(2014).

    [7] G. Molina-Terriza, J. P. Torres, L. Torner. Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum. Phys. Rev. Lett., 88, 013601(2001).

    [8] S. Fürhapter, A. Jesacher, S. Bernet, M. Ritsch-Marte. Spiral phase contrast imaging in microscopy. Opt. Express, 13, 689-694(2005).

    [9] L. Yan, P. Gregg, E. Karimi, A. Rubano, L. Marrucci, R. Boyd, S. Ramachandran. Q-plate enabled spectrally diverse orbital-angular-momentum conversion for stimulated emission depletion microscopy. Optica, 2, 900-903(2015).

    [10] R. Dorn, S. Quabis, G. Leuchs. Sharper focus for a radially polarized light beam. Phys. Rev. Lett., 91, 233901(2003).

    [11] A. F. Abouraddy, K. C. Toussaint. Three-dimensional polarization control in microscopy. Phys. Rev. Lett., 96, 153901(2006).

    [12] J. Wang. Twisted optical communications using orbital angular momentum. Sci. China Phys. Mech. Astron., 62, 34201(2019).

    [13] T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, H. Sasada. Novel optical trap of atoms with a doughnut beam. Phys. Rev. Lett., 78, 4713-4716(1997).

    [14] K.-P. Marzlin, W. Zhang, E. M. Wright. Vortex coupler for atomic Bose-Einstein condensates. Phys. Rev. Lett., 79, 4728-4731(1997).

    [15] A. Vaziri, J.-W. Pan, T. Jennewein, G. Weihs, A. Zeilinger. Concentration of higher dimensional entanglement: qutrits of photon orbital angular momentum. Phys. Rev. Lett., 91, 227902(2003).

    [16] W. Han, Y. Yang, W. Cheng, Q. Zhan. Vectorial optical field generator for the creation of arbitrarily complex fields. Opt. Express, 21, 20692-20706(2013).

    [17] I. Moreno, J. A. Davis, T. M. Hernandez, D. M. Cottrell, D. Sand. Complete polarization control of light from a liquid crystal spatial light modulator. Opt. Express, 20, 364-376(2012).

    [18] S. Tripathi, K. C. Toussaint. Versatile generation of optical vector fields and vector beams using a non-interferometric approach. Opt. Express, 20, 10788-10795(2012).

    [19] S. Chen, X. Zhou, Y. Liu, X. Ling, H. Luo, S. Wen. Generation of arbitrary cylindrical vector beams on the higher order Poincaré sphere. Opt. Lett., 39, 5274-5276(2014).

    [20] C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, M. Ritsch-Marte. Tailoring of arbitrary optical vector beams. New J. Phys., 9, 78(2007).

    [21] P. Gregg, M. Mirhosseini, A. Rubano, L. Marrucci, E. Karimi, R. Boyd, S. Ramachandran. Q-plates as higher order polarization controllers for orbital angular momentum modes of fiber. Opt. Lett., 40, 1729-1732(2015).

    [22] D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, A. Forbes. Controlled generation of higher-order Poincaré sphere beams from a laser. Nat. Photonics, 10, 327-332(2016).

    [23] F. Cardano, E. Karimi, S. Slussarenko, L. Marrucci, C. de Lisio, E. Santamato. Polarization pattern of vector vortex beams generated by q-plates with different topological charges. Appl. Opt., 51, C1-C6(2012).

    [24] Y. Liu, X. Ling, X. Yi, X. Zhou, H. Luo, S. Wen. Realization of polarization evolution on higher-order Poincaré sphere with metasurface. Appl. Phys. Lett., 104, 191110(2014).

    [25] Y. Bao, J. Ni, C.-W. Qiu. A minimalist single-layer metasurface for arbitrary and full control of vector vortex beams. Adv. Mater., 32, 1905659(2019).

    [26] Z. H. Jiang, L. Kang, T. Yue, H.-X. Xu, Y. Yang, Z. Jin, C. Yu, W. Hong, D. H. Werner, C.-W. Qiu. A single noninterleaved metasurface for high-capacity and flexible mode multiplexing of higher-order Poincaré sphere beams. Adv. Mater., 32, 1903983(2019).

    [27] F. Wang, F. Shi, T. Wang, F. Pang, T. Wang, X. Zeng. Method of generating femtosecond cylindrical vector beams using broadband mode converter. IEEE Photon. Technol. Lett., 29, 747-750(2017).

    [28] B. Mao, Y. Liu, H. Zhang, K. Yang, Y. Han, Z. Wang, Z. Li. Complex analysis between CV modes and OAM modes in fiber systems. Nanophotonics, 8, 271-285(2018).

    [29] Y. Xu, S. Chen, Z. Wang, B. Sun, H. Wan, Z. Zhang. Cylindrical vector beam fiber laser with a symmetric two-mode fiber coupler. Photon. Res., 7, 1479-1484(2019).

    [30] H. Wan, J. Wang, Z. Zhang, Y. Cai, B. Sun, L. Zhang. High efficiency mode-locked, cylindrical vector beam fiber laser based on a mode selective coupler. Opt. Express, 25, 11444-11451(2017).

    [31] X. Heng, J. Gan, Z. Zhang, J. Li, M. Li, H. Zhao, Q. Qian, S. Xu, Z. Yang. All-fiber stable orbital angular momentum beam generation and propagation. Opt. Express, 26, 17429-17436(2018).

    [32] H. Zhang, Y. Liu, Z. Wang, B. Mao, Y. Han, K. Yang. Generation of arbitrary polarized OAM mode based on a fiber mode selective coupler. J. Opt., 21, 085705(2019).

    [33] J. Yang, H. Liu, F. Pang, J. Wen, H. Zheng, L. Chen, X. He, Y. Shang, N. Chen, Y. Li, T. Wang. All-fiber multiplexing and transmission of high-order circularly polarized orbital angular momentum modes with mode selective couplers. IEEE Photon. J., 11, 7202909(2019).

    [34] X. Zeng, Y. Li, L. Feng, S. Wu, C. Yang, W. Li, W. Tong, J. Wu. All-fiber orbital angular momentum mode multiplexer based on a mode-selective photonic lantern and a mode polarization controller. Opt. Lett., 43, 4779-4782(2018).

    [35] Y. Zhao, Y. Liu, L. Zhang, C. Zhang, J. Wen, T. Wang. Mode converter based on the long-period fiber gratings written in the two-mode fiber. Opt. Express, 24, 6186-6195(2016).

    [36] N. Bozinovic, S. Golowich, P. Kristensen, S. Ramachandran. Control of orbital angular momentum of light with optical fibers. Opt. Lett., 37, 2451-2453(2012).

    [37] B. Sun, A. Wang, L. Xu, C. Gu, Z. Lin, H. Ming, Q. Zhan. Low-threshold single-wavelength all-fiber laser generating cylindrical vector beams using a few-mode fiber Bragg grating. Opt. Lett., 37, 464-466(2012).

    [38] B. Sun, A. Wang, L. Xu, C. Gu, Y. Zhou, Z. Lin, H. Ming, Q. Zhan. Transverse mode switchable fiber laser through wavelength tuning. Opt. Lett., 38, 667-669(2013).

    [39] J. Zhang, H. Wan, L. Zhang, Z. Zhang. All-fiber CW cylindrical vector beam fiber laser based on few-mode fiber Bragg grating. Optik, 147, 109-114(2017).

    [40] D. Mao, T. Feng, W. Zhang, H. Lu, Y. Jiang, P. Li, B. Jiang, Z. Sun, J. Zhao. Ultrafast all-fiber based cylindrical-vector beam laser. Appl. Phys. Lett., 110, 021107(2017).

    [41] Y. Zhang, Z. Bai, C. Fu, S. Liu, J. Tang, J. Yu, C. Liao, Y. Wang, J. He, Y. Wang. Polarization-independent orbital angular momentum generator based on a chiral fiber grating. Opt. Lett., 44, 61-64(2019).

    [42] R. Chen, J. Wang, X. Zhang, A. Wang, H. Ming, F. Li, D. Chung, Q. Zhan. High efficiency all-fiber cylindrical vector beam laser using a long-period fiber grating. Opt. Lett., 43, 755-758(2018).

    [43] V. Technologies. V. Technologies. https://versawave.com/products/polarization-modulators/

    [44] B. J. Roxworthy, K. C. Toussaint. Optical trapping with π-phase cylindrical vector beams. New J. Phys., 12, 073012(2010).

    [45] L. Feng, Y. Li, S. Wu, X. Zeng, W. Li, J. Qiu, Y. Zuo, X. Hong, H. Guo, H. Yu, J. Wu. Generation of LP11/LP21 modes with tunable mode lobe orientation controlled by polarization states. Opt. Express, 27, 13150-13159(2019).

    [46] S. Li, Q. Mo, X. Hu, C. Du, J. Wang. Controllable all-fiber orbital angular momentum mode converter. Opt. Lett., 40, 4376-4379(2015).

    [47] S. G. Leon-Saval, N. K. Fontaine, J. R. Salazar-Gil, B. Ercan, R. Ryf, J. Bland-Hawthorn. Mode-selective photonic lanterns for space-division multiplexing. Opt. Express, 22, 1036-1044(2014).

    [48] Q. Mo, Z. Hong, D. Yu, S. Fu, L. Wang, K. Oh, M. Tang, D. Liu. All-fiber spatial rotation manipulation for radially asymmetric modes. Sci. Rep., 7, 2539(2017).

    CLP Journals

    [1] Junli Qi, Weihua Wang, Bo Shi, Hui Zhang, Yanan Shen, Haifei Deng, Wenjing Pu, Xin Liu, Huihui Shan, Xiaomin Ma, Lianqiang Zhang, Wei Lu, Meicheng Fu, Xiujian Li. Concise and efficient direct-view generation of arbitrary cylindrical vector beams by a vortex half-wave plate[J]. Photonics Research, 2021, 9(5): 803

    Lipeng Feng, Yan Li, Sihan Wu, Xun Guan, Chen Yang, Weijun Tong, Wei Li, Jifang Qiu, Xiaobin Hong, Yong Zuo, Hongxiang Guo, Erhu Chen, Jian Wu. All-fiber generation of arbitrary cylindrical vector beams on the first-order Poincaré sphere[J]. Photonics Research, 2020, 8(8): 1268
    Download Citation