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We propose a linear mapping relationship between the polarization of the fundamental mode and the cylindrical
vector (CV) modes on the first-order Poincaré sphere (FOPS) in fiber. The new method is based on the four-
dimensional complex Jones matrices in terms of the linearly polarized mode bases. With our theoretical model, an
all-fiber approach to generate arbitrary CV beams on the FOPS is proposed theoretically and verified experimen-
tally. In the experiment, through the combination of a mode converter and a two-segment cascaded few-mode
fiber with fixed stresses, it is possible to generate all CV modes on the FOPS by only adjusting the polarization of
the fundamental mode. The Stokes parameters of the output light are measured to verify our scheme, which shows
good agreement with the theoretical prediction. The method may provide a convenient way to generate CV beams
and evolve the polarization states in any path on the FOPS, which is expected to have potential applications in
encoding information and quantum computation. © 2020 Chinese Laser Press

https://doi.org/10.1364/PRJ.385007

1. INTRODUCTION

Polarization, originated from the vectorial nature of electromag-
netic field, is exploited in many photonic applications. In the
past, the homogeneous polarization representation by Poincaré
sphere (PS), such as linear, elliptical, and circular polarizations
[1], has drawn great attention. Recently, a light beam with a
spatially inhomogeneous state of polarization (SOP), which is
referred to as a vector beam, has been investigated because of its
unique properties [2,3]. Unlike the conventional homogeneous
SOPs, the SOP of a vector beamdepends on its transverse profile.
Among vector beams, cylindrical vector (CV) beams have re-
ceived much attention due to their cylindrical symmetry in both
polarization and phase, which can be represented by a higher-
order Poincaré sphere (HOPS) [4]. The modes on the poles and
the equator have especially attracted considerable attention in
multiple applications, including optical tweezers [5,6], quantum
information processing [7], nanoscale microscopy [8–11], and
large-capacity optical communication [12]. Themodes along the
longitude, which carry tunable average orbital angular momen-
tum (OAM), introduce an extra dimension to control optical
systems and thus spur novel applications from atomic manipu-
lation [13,14] to quantum information processing [15].

Driven by their various applications, the generation of CV
beams has also emerged as a hot topic. In the free-space system,
the optical elements with spatially varying phase distribution,
including spatial light modulators (SLMs), q-plates, and meta-
surfaces, are proposed to generate the modes on the first-order
PS (FOPS). Benefitting from its programmability and polari-
zation property, an SLM can be used to generate the desired
light field, either in combination with quarter-waveplates
(QWPs) or by interfering two SLM-generated coaxial Laguerre
Gaussian modes [16–20]. Besides, the modes on FOPS can also
be generated by controlling the input polarization of the q-plate
and metasurface, which can convert the orthogonal circular
polarizations to OAM modes owning opposite topological
charges with orthogonal circular polarizations [21–26]. However,
the spatial devices are bulky and expensive. Therefore, all-fiber
generation is preferred, especially in the scenario of medical
endoscopy and optical tweezers. Currently, the generation of
CV modes based on few-mode fiber or specially designed fiber
attracts increasing interest because these systems possess fea-
tures of excellent flexibility, robust mode confinement, and
compact structure. The all-fiber system CV mode generators
consist of two stages: a polarization controller (PC) on the
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single-mode fiber (single-mode PC) as well as a first-order
mode converter before, and a polarization controller on, the
few-mode fiber (FMF) [27–40]. The mode-selective converter
[27–33], the photonic lantern [34], the fiber grating [35,36],
and the lateral offset splicing spot [37–40] act as the first-order
mode converter to convert an LP01 mode to a first-order mode.
The single-mode PC and the PC added on the FMF are ad-
justed simultaneously to control the polarization state of the
output CV mode. The preceding methods do not show very
satisfying performance, mostly in three aspects. First, they
all only generate four specific CV modes in experiments.
Second, how CV modes change, by varying the state of stress
on the FMF and the polarization of the fundamental mode, is
not explicitly given in the above papers; lacking an explicit
function of the CV mode with regard to the stress and polari-
zation, the adjustment of both PCs can hardly follow a clear
routine and regulated model. Third, the stress on the FMF
has only been adjusted by mechanical or thermal methods
so far, which are very inconvenient and slow. Apart from
the methods in Refs. [27–40], the CV mode can be generated
by adjusting the input polarization state before the fiber grating
[41,42]. However, this kind of setup only obtains two modes
on the poles [41] or four specific modes on the equator of the
FOPS [42].

In this paper, we propose an explicit linear mapping relation-
ship between the polarization of the fundamental mode and the
CV modes on the FOPS in an all-fiber system, assisted by the
Jones matrix representation. We systematically explain the trans-
mission process of modes in the FMF with stress, in terms of
linearly polarized (LP) mode bases. Then, based on the relation-
ship between OAM and LP mode bases, we reveal that, by
cascading a photonic lantern and two segments of FMFs with
different stresses, the input fundamental mode with a homo-
geneous polarization state located on the PS can be converted
to vector modes on the FOPS at the output. During the process
of mode switching, the stress states of the two-segment FMFs are
fixed, which can induce the π � 2nπ, π∕2� 2nπ, −π∕2� 2nπ

phase differences between the eigenmodes in the first FMF seg-
ment and −π∕2� 2nπ, π � 2nπ, −π∕2� 2nπ in the second
FMF segment. To the best knowledge of the authors, this is
the first investigation of all-fiber generation of arbitrary cylin-
drical vector beams on the first-order PS by only adjusting the
polarization of the fundamental mode. The generated vector
modes can be changed by adjusting the polarization state of
the input fundamental mode, which implies that this system
could enable a nanosecond time scale switch with an electronic
PC [43]. This would be immensely useful for networking func-
tionalities in mode-division multiplexing schemes, as well as
switching bases in higher-dimensional quantum links. The
proposed scheme is numerically and experimentally studied.
Subsequently, the experimentally measured SOPs of the pro-
duced vector modes agree well with the simulated ones.

2. THEORY

A. Higher-Order Poincaré Sphere
The homogeneous polarization state of a mode can be de-
scribed as a point on the surface of a PS as shown in Fig. 1(a).
Algebraically, any point on the polarization PS can be seen as
the superposition of two orthogonal circular polarizations, cor-
responding to the two poles on the polarization PS as shown
in Eq. (1):

jE0i � cos

�
υ

2

�
jσ�i � sin

�
υ

2

�
eiϕjσ−i, (1)

where σ� � ~x � i~y and σ− � ~x − i~y are the right and left
circular polarizations, and ~x and ~y are two orthogonal linear
polarizations along the horizontal and vertical directions.
The azimuthal angle υ and polar angle ϕ affect the orientation
and ellipticity of the polarization. The points on the PS can be
expressed by the following Jones vector, where Eσ� and Eσ− are
the complex amplitudes of the σ� and σ− modes, respectively:

(a)

(b)

(c)

Fig. 1. (a) Polarization PS for representing the plane wave states of polarization. (b) The �1st-order PS and (c) the −1st-order PS. Modes and
polarizations are provided for the states at the poles and for the special points on the equator.
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jE0i � � Eσ� Eσ− �T �
h
cos

�
υ
2

�
sin

�
υ
2

�
eiϕ

i
T
: (2)

A given polarization can be represented not only by the
superposition of two poles but also by the superposition of
two points on both sides of the diameter. Thus, the given
polarization can also be denoted by the horizontal and vertical
polarization bases:

jE0i �
�
Ex
Ey

�
� 1ffiffiffi

2
p

�
1 1
i −i

��
Eσ�

Eσ−

�
: (3)

If two points on the arbitrary diameter of the equator are
used as the bases of the Jones matrix, the given polarization
can be expressed as

jE0i �
�
Eg
Ed

�
�

�
cos�γ∕2� −sin�γ∕2�
sin�γ∕2� cos�γ∕2�

��
Ex
Ey

�
, (4)

where ~g and ~d are two orthogonal linear polarizations with
angles γ∕2 and γ∕2� π∕2 to the horizontal directions, respec-
tively. Similarly, the vector beams on the HOPS can be denoted
as the linear superposition of two orthogonal circular polariza-
tions with opposite topological charges, corresponding to the
two poles on the HOPS. Thus, the points on the HOPS
can be denoted by the following equation in terms of the azi-
muthal and polar angles (υ 0,ϕ 0) in the sphere:

jEli � cos

�
υ 0

2

�
jσ�OAM−li � sin

�
υ 0

2

�
eiϕ 0 jσ−OAM�li,

(5)

where σ�OAM−l and σ−OAM�l are the �lth order OAM
modes with right and left circular polarizations. l can take
an arbitrary integer number ranging from −∝ to � ∝. The
points on the HOPS can also be expressed by a Jones vector,
where Eσ�OAM−l

and Eσ−OAM�l
are the complex amplitudes of

the σ�OAM−l and σ−OAM�l modes, respectively:

jEli � �Eσ�OAM−l
Eσ−OAM�l �T �

h
cos

	
υ 0
2



sin

	
υ 0
2



eiϕ 0

i
T
:

(6)

Equations (3) and (4) indicate that cos (υ 0∕2) and sin�ϕ 0∕2�
are the amplitude factors of the two poles, while exp�i ϕ 0� is the
phase difference between the two poles. Figures 1(b) and 1(c)
show the mode profiles and polarization states when l � �1
and −1 (�1st- and�1st-order PSs). It can be seen that param-
eter ϕ 0 makes the polarization of each point on the cross section
rotate counterclockwise, while parameter υ 0 affects the polari-
zation ellipticity. Because any point on the HOPS can be
regarded as the superposition of two poles with different υ 0

and ϕ 0, e.g., the amplitudes of the two poles and the phase
difference between them, all the vector beams on the HOPS
can be achieved by modifying υ 0 and ϕ 0.

Since the first-order mode group is fourfold degenerated,
it is necessary to use four degenerated mode bases (e.g.,
σ�OAM−1, σ−OAM�1, σ�OAM�1, and σ−OAM−1) to denote
any first-order mode. For the�1st-order PS shown in Fig. 1(b),
the amplitudes of the σ�OAM�1 and σ−OAM−1 modes are
zero. Therefore, the vector modes on the �1st-order PS can
completely characterize a general CV beam. For the�1st-order

PS shown in Fig. 1(c), the amplitudes of the σ�OAM−1 and
σ−OAM�1 modes are zero. Thus, the vector modes on the
−1st-order PS can describe the so-called π-vector beams [44].

B. Transmission Process of the Modes in the FMF
with Stress

In an ideal circular-core FMF, the HE
e∕o
l,m, EH

e∕o
l,m, TM0,m,

and TE0,m modes are the eigensolutions of Maxwell’s equations
as shown in Fig. 2(a). l is the azimuthal order, while m is the
radial order of the eigenmodes. We specify the situation of the
radial order m � 1. In general, the eigenmodes with similar
effective refractive index (neff ) have similar group velocities
and comprise a single mode group. The zeroth-order mode
group, also named the fundamental mode, is combined by
two degenerated modes (HEeven

11 and HEodd
11 ), accounting for

the two orthogonal polarization orientations. lth (l > 0) order
mode groups consist of four degenerated modes, e.g., the
HE

e∕o
l�1,m,EH

e∕o
l−1,m modes for l > 1, and TM0,m,TE0,m,HE

e∕o
1,m

for l � 1. However, in practice, a disturbance acting on the fi-
ber forces the original isotropic fiber into an anisotropic medium
with fast (F) and slow (S) axes. The slow and fast axes are along
the stress direction and the orthogonal direction, respectively.
The zeroth-order eigenmodes profile keeps the Gaussian distri-
bution, while the higher-order eigenmodes evolve to LPF,Slm

modes (LPF,Slmag ,LP
F,S
lmbg ,LP

F,S
lmad , and LP

F,S
lmbd ). Here “a” and “b”

indicate the mode lobe orientations of two orthogonal eigenm-
odes. The “a” orientation aligns with the slow axis of the fiber
under stress, while the “b” orientation makes an angle 90°∕2l
with the “a” orientation. Also, “g” and “d” indicate two orthogo-
nal polarization directions with a 90° angle to each other, which
are respectively along the slow and fast axes.

As an example, Fig. 2(b) shows the mode profiles of
two-mode optical fiber calculated by the finite element
method. Attributed to the different effective refractive indexes
introduced by the stress, propagation constants of the four
eigenmodes are different. Consequently, there will be phase
differences between the eigenmodes after transmission. The
phase differences can be calculated by δ � 2πLΔneff∕λ, where
λ is the operating wavelength, Δneff is the effective refractive
index difference accordingly, and L is the stress-applied length.
The phase differences between the modes LPF,Slmag and LPF,Slmbd ,

(a)

(b)

Fig. 2. (a) Eigenmodes in the FMF without stress. (b) Eigenmodes
in the FMF with stress.
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LPF,Slmbg and LPF,Slmbd , and LPF,Slmad and LPF,Slmbd are defined as

δF,Sagbd , δ
F,S
bgbd , and δF,Sadbd , respectively. When an FMF is under

segmented stresses in different magnitudes and directions,
the piecewise model can be represented by the Jones matrix
as in Eq. (7). For convenience of calculation, the output mode
and input mode of the FMF are expressed by the same mode
bases (LPlmag , LPlmbg , LPlmad , and LPlmbd ), whose mode ori-
entation “a” and polarization direction “g” are in the same but
arbitrary direction. Elmag ,Elmbg ,Elmad , and Elmbd are the
amplitudes of the LPlmag , LPlmbg ,LPlmad , and LPlmbd modes,
denoted as

jEouti �

2
664
Elmag
Elmbg
Elmad
Elmbd

3
775
out

� R�−αn�PnR�αn� 	 	 	R�−α1�P1R�α1�

2
664
Elmag
Elmbg
Elmad
Elmbd

3
775
in

, (7)

R�αn� �

2
6664

cos�lαn� cos αn sin�lαn� cos αn cos�lαn� sin αn sin�lαn� sin αn
−sin�lαn� cos αn cos�lαn� cos αn −sin�lαn� sin αn cos�lαn� sin αn
−cos�lαn� sin αn −sin�lαn� sin αn cos�lαn� cos αn sin�lαn� cos αn
sin�lαn� sin αn −cos�lαn� sin αn −sin�lαn� cos αn cos�lαn� cos αn

3
7775, (8)

Pn �

2
666664

ei�δ
F,S
agbd �n 0 0 0

0 ei�δ
F,S
bgbd �n 0 0

0 0 ei�δ
F,S
adbd �n 0

0 0 0 1

3
777775
, (9)

where R�αn� and R�−αn� are the rotation matrix and reverse
rotation matrix [45]. αn represents the angle between the mode
orientation of the eigenmode [�LPF,Slmag�n] of the nth-segment
FMF and the mode orientation of the input mode basis
(LPlmag ). Thus, the R�αn�matrix is used to convert input mode
bases along an arbitrary direction to the mode bases along the
direction of eigenmodes for the nth-segment FMF, while Pn
represents the phase difference matrix in the nth-segment FMF.

The higher-order mode can be expressed by either LP
mode bases or OAM mode bases [46]. In order to keep the
mode bases consistent with the poles on the HOPS, the
LP mode bases of the output mode need to be converted to
the OAM mode bases. In the FMF, the relationship between
the LP mode and the OAM mode is OAM�leiC1 �
LPlma � iLPlmb. By combining σ�eiC2 � ~g � i~d and
OAM�leiC1 � LPlma � iLPlmb, the conversion matrix of
the Jones vector between the LP mode bases and OAM mode
bases is written as Eq. (10). C1 and C2, which are the phase

terms related to the direction of ~g polarization and mode lobe
orientation of LPlma, are omitted without affecting the final
result:

jEouti �

2
664
Eσ�OAM�l

Eσ−OAM�l

Eσ�OAM−l

Eσ−OAM−l

3
775� 1

2

2
664
1 −i −i −1
1 −i i 1
1 i −i 1
1 i i −1

3
775
2
664
Elmag
Elmbg
Elmad
Elmbd

3
775
out

,

(10)

where Eσ�OAM�l
, Eσ−OAM�l

, Eσ�OAM−l
, and Eσ−OAM−l

are
the complex amplitudes of the σ�OAM�l, σ−OAM�l,
σ�OAM−l, and σ−OAM−l modes, respectively.

C. Generation Principle of the CV Modes on the
FOPS
Based on the analysis in Section 2.B, we propose a method to
achieve a tunable mode on the�1st-order PS with the given αn
and Pn, by changing the input polarization state. According to
Eqs. (7)–(10), αn and Pn can be calculated by scanning the
parameters from −π to π with given input and desired output
Jones matrices.

The schematic diagram for generating the �1st-order PS is
plotted in Fig. 3(a). A mode converter (MC) and two-segment
FMFs with stresses along different directions are used to gen-
erate all the modes on the �1st-order PS. The MC is used to
convert a fundamental mode with the arbitrary SOP on the
polarization PS to the LP11 mode with the same SOP, which
also can be expressed by the same polarization PS. According to
Eqs. (2)–(4), the input polarization at the single-mode fiber
(SMF) port can be written as Eq. (11) in terms of right and
left circular polarizations:

jE ini �
�
Eg
Ed

�
� 1ffiffiffi

2
p eiγ∕2

�
1 eiγ

i −ieiγ

��
cos

�
υ
2

�
sin

�
υ
2

�
eiϕ

�
: (11)

As the MC converts the twofold degenerate fundamental
mode to a fourfold degenerate 1st-order mode, the Jones vector
shown in Eq. (11) will be extended to a 1 × 4 Jones vector.
Thus, the output mode of the MC can be expressed as
Eq. (12) in terms of the LP11ag , LP11bg , LP11ad , and LP11bd
modes. The mode orientation of LP11ag and the direction of
polarization ~g are the same, which are along the direction of
the LP11 mode generated by MC as
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jEMCi �

2
6664
E11ag

E11bg

E11ad

E11bd

3
7775 � eiγ∕2

2
6664

cos
�
υ
2

�� sin
�
υ
2

�
ei�ϕ�γ�

0

i�cos�υ2� − sin�υ2�ei�ϕ�γ��
0

3
7775:

(12)
Then the produced EMC mode is injected into the two-

segment FMFs with stresses along different directions. With
the angles α1 and α2 in the first and second segment of the
FMFs as π∕4 and π∕2, and the phase differences δF,Sagbd ,

δF,Sbgbd , δF,Sadbd in the first and second segment as π � 2nπ,
π∕2� 2nπ, and −π∕2� 2nπ and −π∕2� 2nπ, π � 2nπ,
and −π∕2� 2nπ, the output mode of the two-segment
FMFs can be expressed as Eq. (13) in terms of the LP11ag ,
LP11bg , LP11ad , and LP11bd modes:

jEouti �
h
E11ag E11bg E11ad E11bd

i
T

� R
�
−
π

2

�
2
6664

e−i
π
2 0 0 0

0 eiπ 0 0

0 0 e−i
π
2 0

0 0 0 1

3
7775R

�
π

2

�

· R
�
−
π

4

�
2
6664

eiπ 0 0 0

0 ei
π
2 0 0

0 0 e−i
π
2 0

0 0 0 1

3
7775R

�
π

4

�
jEMCi

�
ffiffiffi
2

p
4

2
66664

0 −1 − i −1� i 0

−1� i 0 0 1� i

1 − i 0 0 1� i

0 1� i −1� i 0

3
77775jEMCi : (13)

As the mode bases of Eout are the LP11ag , LP11bg , LP11ad ,
and LP11bd modes, in order to be consistent with the mode
bases of FOPS, the Eout mode needs to be converted to the
Eout�oam� mode based on the σ�OAM�1, σ−OAM�1,
σ�OAM−1, and σ−OAM−1 modes. According to Eq. (10),
the output mode of the two-segment FMFs can be expressed
as Eq. (14) in terms of the σ�OAM�1, σ−OAM�1,
σ�OAM−1, and σ−OAM−1 mode bases:

jEout�oam�i �
�
Eσ�OAM�1

Eσ−OAM�1
Eσ�OAM−1

Eσ−OAM−1

�
T

� 1
2

2
66664

1 −i −i −1

1 −i i 1

1 i −i 1

1 i i −1

3
77775jEouti

�
ffiffiffi
2

p
4

2
6664

0 −1− i 0 1− i

1� i 0 −1� i 0

−1− i 0 −1� i 0

0 −1− i 0 −1� i

3
7775jEMCi

� ei�54π−γ2�
�
0 sin

	
υ
2



ei�ϕ−π�γ� cos

	
υ
2



0

�
T
: (14)

According to Eq. (14), the output mode of the two-segment
FMFs can be also expressed as Eq. (15). Comparing Eq. (15)
and Eq. (5), we find that the relation between υ 0 and ϕ 0 on the
HOPS and υ and ϕ on the fundamental PS can be written as
υ 0 � υ and ϕ 0 � ϕ − π � γ:

jEouti � ei
5π
4

�
cos

�
υ

2

�
jσ�OAM−1i

� sin

�
υ

2

�
ei�ϕ−π�γ�jσ−OAM�1i

�
: (15)

(a)

(b) (c)

Fig. 3. (a) Schematic diagram to generate CV beams. (b) The polarizations and (c) modes along a longitude and a latitude on the two PSs. (b) and
(c) show the mapping relationship between two PSs when the angle between g polarization and horizontal direction equals 0 deg.
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(a)

(b) (c) (d)

Fig. 4. (a) Experimental setup to generate CV beams. Single-mode PC, single-mode polarization controller; PL, photonic lantern; Few-mode PC,
few-mode polarization controller; Obj., objective; BS, beam splitter; QWP, quarter-wave plate; Pol., polarizer. (b) The microscope image of the few-
mode-end cross section of the fabricated MSPL. (c) Near-field mode images at the few-mode end of the MSPL and output of 2 m FMF-tailed from
the MSPL. (d) Phase differences between the four egienmodes varying the bending radius.

Fig. 5. (a) Experimental results and (b) simulation results when the input polarization is adjusted along the red line on the polarization PS, e.g.,
υ � π∕2, and ϕ varies from 0 to 2π at intervals of π∕4. (c) Experimental results and (d) simulation results when the input polarization is adjusted
along blue line with ϕ � π∕2 and υ varying from π to −π at intervals of π∕4.
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With appropriate υ and ϕ, the arbitrary cylindrical vector
beams represented by the corresponding points (υ 0, ϕ 0) on
the�1st-order PS can be obtained. Figures 3(b) and 3(c) show
the situation when the angle γ∕2 between the g polarization
and the horizontal direction equals 0. If the input SOPs are
located on the blue or red trajectory of fundamental PS, the
output mode will be located on the same color trajectory of
the �1st-order PS.

3. EXPERIMENTAL SETUP, RESULTS, AND
DISCUSSIONS

The experimental apparatus is shown in Fig. 4. The output light
of a laser is divided into two paths by a 1:1 optical coupler. The
lower branch is used to generate first-order mode beams. The
single-mode PC1 is inserted before a mode-selective photonic
lantern (MSPL) to produce an arbitrary polarization beam.
The LP01 to LP11 conversion is realized by the MSPL [47],
and the converted LP11 mode is launched into a step-index
FMF. The homemade MSPL is fabricated by together inserting
two SMF-28 fibers and a two-mode fiber (OFS) to a capillary
with 1.44 refractive index. The final fabricated device has
60 mm transition length, 25.8 μm core diameter, and 105 μm
cladding diameter. The numerical aperture of the few-mode end
is 0.11. Figure 4(b) shows the microscope image of the few-
mode-end cross section of the fabricated MSPL. The near-field
mode images at the few-mode end of the MSPL and output of
2 m FMF-tailed from the MSPL at 1550 nm are presented in
Fig. 4(c). The FMF pigtail, which is with a core diameter of
16 μm and a 0.55% relative refractive index difference between
the core and cladding, is then mounted as coils in two paddle-
type PCs. In order to obtain the desired phase differences
between egienmodes of the FMF, the effective refractive indices
(neff ) of the eigenmodes are simulated with COMSOL software
for the bent TMF with different radii. The phase differences
between the four eigenmodes calculated by δ � 2πLΔneff∕λ
are shown in Fig. 4(d). According to the simulation, when
the bending radius is 15.5 mm, the two loops can generate
−7.05π, 0.59π, and −6.54π phase differences (δF,Sagbd , δ

F,S
bgbd ,

δF,Sadbd ) as shown in the black dots of Fig. 4(d).When the bending
radius is 27 mm, the five loops can generate −8.57π, 2.96π, and
−10.62π phase differences (δF,Sagbd , δ

F,S
bgbd , δ

F,S
adbd ) as shown in the

brown dots of Fig. 4(d). Thus, the FMF is entwined by few-
mode PC1 with one, two, and one loop, whose paddle sizes
are 31 mm. The one loop of the first and third paddles is for
compensating for the unavoidable perturbations of the superflu-
ous FMF, and the two loops are used to generate the desired
phase differences. Then, the FMF is entwined by few-mode
PC2 with zero, five, and two loops, whose paddle sizes are
54 mm. The five loops are used to generate the desired phase
differences, while the two loops are for compensating for the
unavoidable perturbations of the superfluous FMF at the out-
put. The direction of the paddle is to the slow axis of the FMF,
which is under stress. The desired 45 and 90 deg for the first- and
second-segment FMFs are achieved by rotating the paddle’s di-
rections of the few-mode PC1 and PC2. Then, we fix the states
of two few-mode PCs and change the input polarization by
adjusting a single-mode PC1 to obtain the CV modes on the

�1st-order PS. The upper branch is used as the reference
Gaussian beam to record the phase structures of the generated
beams. A tunable attenuator is inserted in the reference branch
to equalize the power of generated and reference beams to the
same order of magnitude. The single-mode PC2 is for obtaining
clear interferences. The output beams and their phase structures
are recorded by an infrared camera (MicronViewer 7290A) after
the generated beam and the reference Gaussian beam travel
through object lenses and a nonpolarization beam splitter (NPBS).

It is experimentally found that this all-fiber design is capable
of producing switchable cylindrical vector beams, and the stable
output could operate over one week in the laboratory environ-
ment. The insertion loss is 3.18 dB, which is mainly introduced
by the homemade photonic lantern. To examine the polariza-
tion of the generated vector beams, the Stokes parameters of
each point on the cross section are measured by passing through
a QP. In the setup, QP consists of a QWP and a polarizer. The
Stokes parameters can be denoted by the following equations:

S1 � I�0°, 0°� − I�90°, 90°�∕S0,
S2 � I�45°, 45°� − I�135°, 135°�∕S0,
S3 � I�−45°, 0°� − I�45°, 0°�∕S0, (16)

where I�i, j� stands for the intensity of the light recorded by the
CCD, and i and j are the optical axis directions of the QWP
and the polarizer with respect to the x axis, respectively [24].
The Stokes parameter S0 is the intensity distribution of the out-
put beam, which can be recorded by the CCD without QP.

By simply adjusting the single-mode PC1 at the input port,
the input SOPs will change continuously following the red
and blue trajectories on the polarization PS as shown in
Fig. 3(b). First, the single-mode PC1 is adjusted to generate

(a)

(b)

Fig. 6. Correlation coefficients for the modes of I�0°, 0°�,
I�90°, 90°�, I�45°, 45°�, and I�135°, 135°�. (a) When υ � π∕2, and
ϕ at intervals of π∕4; (b) when ϕ � π∕2 and υ varies from −7π∕4
to π at intervals of π∕4.
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eight polarization states located at red line with υ � π∕2,
and ϕ varies from 0 to 2π at intervals of π∕4. The output
beams are recorded by projecting their polarizations into the
I�0°, 0°�, I�90°, 90°�, I�45°, 45°�, I�135°, 135°�, I�−45°, 0°�,
and I�45°, 0°� sequence of basis and measuring the correspond-
ing intensity at each pixel of CCD camera. The experimentally
recorded and numerically calculated intensity profiles on the
equator are shown in Figs. 5(a) and 5(b), respectively. Then
the single-mode PC1 is adjusted to generate eight polarization
states that are located at the blue line with ϕ � π∕2, and υ
varies from π to −π at intervals of π∕4. The output beams
are also recorded by projecting their polarizations into the
I�0°, 0°�, I�90°, 90°�, I�45°, 45°�, I�135°, 135°�, I�−45°, 0°�,
and I�−45°, 0°� sequence of basis. The experimentally recorded
and numerically calculated intensity profiles on the equator are
shown in Figs. 5(c) and 5(d), respectively. In order to determine
the helical phase front of poles, the beams passing through the
QP interfere with a Gaussian beam.

We calculate the correlation coefficients [48] between the ex-
perimental I�0°, 0°�, I�90°, 90°�, I�45°, 45°�, and I�135°, 135°�

modes and the simulated ones as shown in Figs. 6(a) and 6(b). For
all the modes, the correlation coefficients are more than 79%. In
comparison with the theoretical distributions, the experimental
results verify that the emerging beams are the desirable CV beams
on the �1st-order PS.

For further verification, we map the polarization distribu-
tion of the generated modes. First, we extracted the exact
Stokes parameter values of each point on the cross section.
Then, according to the relationship of the Stokes parameters
and the polarization state in Eq. (17), the polarization states
of the emerging beams are figured out. ϑ is the azimuthal angle,
and χ is elliptical angle of the polarization state. By depicting
the graph of polarization distribution, we intuitively verify
that the output beams are the desired CV beams as shown
in Fig. 7:

ϑ � 1

2
arcsin�S2∕S1�, χ � 1

2
arcsin�S3�: (17)

Figure 7 theoretically and experimentally records the polari-
zation states of the 16 points on the equator and the longitude
of ϕ 0 � −π∕2, where the red and black arrows represent the
SOPs. The experimental results agree well with the theory. It
is difficult to ensure the pictures located at the same pixel during
extracting the parameter values, which leads to the deviation of
the experimental results. Although our experiments are limited
to FOPS with l � �1, our scheme is able to produce the
states on FOPS with l � −1 and higher-order PS (jlj > 1)
using the same analysis method and experimental setup. For
example, when the α of the second-segment FMF is set as
0 deg while keeping the same stresses on the FMF, it is theo-
retically possible to produce any states on the −1st-order PS.

4. CONCLUSION

We propose a linear mapping relationship between the polari-
zation of the fundamental mode and the CV modes on the
FOPS in an all-fiber system, based on the four-by-four

1 2 3 4 5 6 7 8

Exp.

Sim.

1 2 3 4 5 6 7 8

Exp.

Sim.

1 2 3 4 5 6 7 8

Exp.

Sim.

1 2 3 4 5 6 7 8

Exp.

Sim.

Fig. 7. Polarization distributions of the modes along the longitude
and latitude on the FOPS.

Fig. 8. Detailed comparison between our approach and others’. The yellow rows represent the free-space system, and the green rows represent the
all-fiber system.
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Jones matrices. Through the theoretical analysis and appropri-
ate parameter selection, all the CV beams on the FOPS can be
generated by only adjusting the polarization of the fundamental
mode, with a PL and two fixed paddle-type PCs on the FMF
used to generate the −7.05π, 0.59π, and −6.54π as well as
−8.57π, 2.96π, and −10.62π phase differences. By adjusting
the input polarization, the 16 vector beams on the equator
and the longitude of ϕ 0 � −π∕2 on the�1st-order PS are gen-
erated in the experiment. As a result, fast switching between the
modes on the�1st-order PS can be easily achieved. The polari-
zation distributions have been reconstructed by calculating the
point-by-point Stokes parameter over the entire transverse
plane. In addition, the scheme not also makes it possible to
generate the vector beams on the −1st-order PS by changing
the slow axis direction of the second paddle-type PC, but also
to generate the vector modes on the HOPS (jlj > 1). Our
scheme is highly tunable and hence provides a practical and
convenient way to evolve the polarization state in any path
on an FOPS. Finally, Fig. 8 is given to make more detailed
comparison between our approach and others’. The yellow
rows represent the free-space system, and the green rows re-
present the all-fiber system.
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