• Acta Optica Sinica
  • Vol. 42, Issue 16, 1627001 (2022)
Ying Chen1, Yu Zhou2、**, and Xiaodong Ma1、*
Author Affiliations
  • 1Xinjiang Key Laboratory for Luminescence Minerals and Optical Functional Materials, School of Physics and Electronic Engineering, Xinjiang Normal University, Urumqi 830054, Xinjiang , China
  • 2School of Science, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu , China
  • show less
    DOI: 10.3788/AOS202242.1627001 Cite this Article Set citation alerts
    Ying Chen, Yu Zhou, Xiaodong Ma. Landau Damping of Collective Excitation in Homogeneous Bose-Einstein Condensate[J]. Acta Optica Sinica, 2022, 42(16): 1627001 Copy Citation Text show less
    References

    [1] Pethick C J, Smith H[M]. Bose-Einstein condensation in dilute gases(2008).

    [2] Dalfovo F, Minniti C, Pitaevskii L P. Frequency shift and mode coupling in the nonlinear dynamics of a Bose condensed gas[J]. Physical Review A, 56, 4855-4863(1997).

    [3] Morgan S A, Choi S, Burnett K et al. Nonlinear mixing of quasiparticles in an inhomogeneous Bose condensate[J]. Physical Review A, 57, 3818-3829(1998).

    [4] Hechenblaikner G, Maragò O M, Hodby E et al. Observation of harmonic generation and nonlinear coupling in the collective dynamics of a Bose-Einstein condensate[J]. Physical Review Letters, 85, 692-695(2000).

    [5] Hodby E, Maragò O M, Hechenblaikner G et al. Experimental observation of Beliaev coupling in a Bose-Einstein condensate[J]. Physical Review Letters, 86, 2196-2199(2001).

    [6] Edwards M, Dodd R J, Clark C W et al. Properties of a Bose-Einstein condensate in an anisotropic harmonic potential[J]. Physical Review A, 53, R1950-R1953(1996).

    [7] Maragò O M, Hopkins S A, Arlt J et al. Observation of the scissors mode and evidence for superfluidity of a trapped Bose-Einstein condensed gas[J]. Physical Review Letters, 84, 2056-2059(2000).

    [8] Al Khawaja U, Stoof H T C. Nonlinear coupling between scissors modes of a Bose-Einstein condensate[J]. Physical Review A, 65, 013605(2001).

    [9] Hechenblaikner G, Morgan S A, Hodby E et al. Calculation of mode coupling for quadrupole excitations in a Bose-Einstein condensate[J]. Physical Review A, 65, 033612(2002).

    [10] Bijlsma M J, Stoof H T C. Collisionless modes of a trapped Bose gas[J]. Physical Review A, 60, 3973-3981(1999).

    [11] Öhberg P, Stenholm S. Hartree-Fock treatment of the two-component Bose-Einstein condensate[J]. Physical Review A, 57, 1272-1279(1998).

    [12] Stringari S. Collective excitations of a trapped Bose-condensed gas[J]. Physical Review Letters, 77, 2360-2363(1996).

    [13] Fetter A L. Ground state and excited states of a confined condensed Bose gas[J]. Physical Review A, 53, 4245-4249(1996).

    [14] Shchedrin G, Jaschke D, Carr L D. Absence of Landau damping in driven three-component Bose-Einstein condensate in optical lattices[J]. Scientific Reports, 8, 11523(2018).

    [15] Ota M, Larcher F, Dalfovo F et al. Collisionless sound in a uniform two-dimensional Bose gas[J]. Physical Review Letters, 121, 145302(2018).

    [16] Mendonça J T, Terças H, Gammal A. Quantum Landau damping in dipolar Bose-Einstein condensates[J]. Physical Review A, 97, 063610(2018).

    [17] Cappellaro A, Toigo F, Salasnich L. Collisionless dynamics in two-dimensional bosonic gases[J]. Physical Review A, 98, 043605(2018).

    [18] Zhou W Y, Wu Y J, Kou S P. Bogoliubov excitations in a Bose–Hubbard model on a hyperhoneycomb lattice[J]. Chinese Physics B, 27, 050302(2018).

    [19] Wang Z H, Hou J X. Low-lying collective modes of a one-dimensional Bose gas with quantum fluctuation effect[J]. Journal of Low Temperature Physics, 199, 1324-1331(2020).

    [20] Kurkjian H, Ristivojevic Z. Damping of elementary excitations in one-dimensional dipolar Bose gases[J]. Physical Review Research, 2, 033337(2020).

    [21] Ristivojevic Z, Matveev K A. Decay of Bogoliubov excitations in one-dimensional Bose gases[J]. Physical Review B, 94, 024506(2016).

    [22] Sukhachov P O, Banerjee S, Balatsky A V. Bose-Einstein condensate of Dirac magnons: pumping and collective modes[J]. Physical Review Research, 3, 013002(2021).

    [23] Malakar M, Ray S, Sinha S et al. Phases and collective modes of bosons in a triangular lattice at finite temperature: a cluster mean field study[J]. Physical Review B, 102, 184515(2020).

    [24] Klimin S N, Tempere J, Kurkjian H. Collective excitations of superfluid Fermi gases near the transition temperature[J]. Physical Review A, 103, 043336(2021).

    [25] Karpov I, Argyropoulos T, Shaposhnikova E. Thresholds for loss of Landau damping in longitudinal plane[J]. Physical Review Accelerators and Beams, 24, 011002(2021).

    [26] Li C X, Ma X D, Ma Y L et al. Resonant interactions of collective modes in a quasi-one-dimensional attractive Bose–Einstein condensate[J]. Journal of the Physical Society of Japan, 82, 044002(2013).

    [27] Natu S S, Wilson R M. Landau damping in a collisionless dipolar Bose gas[J]. Physical Review A, 88, 063638(2013).

    [28] Ma Y L, Chui S T. Analytical expressions for the hydrodynamic excitation spectrum of Bose-Einstein condensates in axially anisotropic traps[J]. Physical Review A, 65, 053610(2002).

    [29] Hu B, Huang G X, Ma Y L. Analytical solutions of the Bogoliubov–de Gennes equations for excitations of a trapped Bose-Einstein-condensed gas[J]. Physical Review A, 69, 063608(2004).

    [30] Zhu K Q, Yu Z F, Gao J M et al. Periodically modulated interaction effect on transport of Bose-Einstein condensates in lattice with local defects[J]. Chinese Physics B, 28, 010307(2019).

    [31] Xi Z H, Yang X Y, Tang N et al. Bénard-von K-rm-n vortex street in dipolar Bose-Einstein condensate trapped by square-like potential[J]. Acta Physica Sinica, 67, 230501(2018).

    [32] Li J, Liu W M. Ground state of spin-orbit coupled rotating two-component Bose-Einstein condensate in gradient magnetic field[J]. Acta Physica Sinica, 67, 110302(2018).

    [33] Jia R Y, Fang P P, Gao C et al. Quenched solitons and shock waves in Bose-Einstein condensates[J]. Acta Physica Sinica, 70, 180303(2021).

    [34] Li J, Liu B, Bai J et al. Ground state of spin-orbit coupled rotating ferromagnetic Bose-Einstein condensate in toroidal trap[J]. Acta Physica Sinica, 69, 140301(2020).

    [35] Liang Z X, Zhang Z D, Liu W M. Dynamics of a bright soliton in Bose-Einstein condensates with time-dependent atomic scattering length in an expulsive parabolic potential[J]. Physical Review Letters, 94, 050402(2005).

    [36] Ji A C, Liu W M, Liang S J et al. Dynamical creation of fractionalized vortices and vortex lattices[J]. Physical Review Letters, 101, 010402(2008).

    [37] Wang D S, Hu X H, Hu J P et al. Quantized quasi-two-dimensional Bose-Einstein condensates with spatially modulated nonlinearity[J]. Physical Review A, 81, 025604(2010).

    [38] Zhou Y, Zhang Y, Wang Y et al. Dark soliton properties of nonlinear Schrödinger equation with (2n+1)‑th order nonlinearity[J]. Acta Optica Sinica, 40, 0927001(2020).

    [39] Ouyang X C, Hu Q Q, Ye M F et al. Development of integrated low-phase noise microwave frequency synthesizer for cold atomic gravimeter[J]. Chinese Journal of Lasers, 48, 2311001(2021).

    [40] Dou F Q, Zhang J H, Yang J et al. Multipath conversion and interference effect of ultracold bosonic heteronuclear tetra-atomic molecule[J]. Laser & Optoelectronics Progress, 58, 1102001(2021).

    [41] Ghasemian E, Tavassoly M K. Population dynamics of ultra-cold atoms interacting with radiation fields in the presence of inter-atomic collisions[J]. Chinese Optics Letters, 19, 122701(2021).

    [42] Maragò O, Hechenblaikner G, Hodby E et al. Temperature dependence of damping and frequency shifts of the scissors mode of a trapped Bose-Einstein condensate[J]. Physical Review Letters, 86, 3938-3941(2001).

    [43] Stamper-Kurn D M, Miesner H J, Inouye S et al. Collisionless and hydrodynamic excitations of a Bose-Einstein condensate[J]. Physical Review Letters, 81, 500-503(1998).

    [44] Chevy F, Bretin V, Rosenbusch P et al. Transverse breathing mode of an elongated Bose-Einstein condensate[J]. Physical Review Letters, 88, 250402(2002).

    [45] Jin D S, Matthews M R, Ensher J R et al. Temperature-dependent damping and frequency shifts in collective excitations of a dilute Bose-Einstein condensate[J]. Physical Review Letters, 78, 764-767(1997).

    [46] Zaremba E, Griffin A, Nikuni T. Two-fluid hydrodynamics for a trapped weakly interacting Bose gas[J]. Physical Review A, 57, 4695-4698(1998).

    [47] Zaremba E, Nikuni T, Griffin A. Dynamics of trapped Bose gases at finite temperatures[J]. Journal of Low Temperature Physics, 116, 277-345(1999).

    [48] Jackson B, Zaremba E. Quadrupole collective modes in trapped finite-temperature Bose-Einstein condensates[J]. Physical Review Letters, 88, 180402(2002).

    [49] Jackson B, Zaremba E. Accidental suppression of Landau damping of the transverse breathing mode in elongated Bose-Einstein condensates[J]. Physical Review Letters, 89, 150402(2002).

    [50] Guilleumas M, Pitaevskii L P. Temperature-induced resonances and Landau damping of collective modes in Bose-Einstein condensed gases in spherical traps[J]. Physical Review A, 61, 013602(1999).

    [51] Das K, Bergeman T. Trends in resonance energy shifts and decay rates for Bose condensates in a harmonic trap[J]. Physical Review A, 64, 013613(2001).

    [52] Pitaevskii L P, Stringari S. Landau damping in dilute Bose gases[J]. Physics Letters A, 235, 398-402(1997).

    [53] Fedichev P O, Shlyapnikov G V, Walraven J T M. Damping of low-energy excitations of a trapped Bose-Einstein condensate at finite temperatures[J]. Physical Review Letters, 80, 2269-2272(1998).

    [54] Reidl J, Csordás A, Graham R et al. Shifts and widths of collective excitations in trapped Bose gases determined by the dielectric formalism[J]. Physical Review A, 61, 043606(2000).

    [55] Mizushima T, Ichioka M, Machida K. Beliaev damping and Kelvin mode spectroscopy of a Bose-Einstein condensate in the presence of a vortex line[J]. Physical Review Letters, 90, 180401(2003).

    [56] Morgan S A, Rusch M, Hutchinson D A W et al. Quantitative test of thermal field theory for Bose-Einstein condensates[J]. Physical Review Letters, 91, 250403(2003).

    [57] Giorgini S. Damping in dilute Bose gases: a mean-field approach[J]. Physical Review A, 57, 2949-2957(1998).

    [58] Giorgini S. Collisionless dynamics of dilute Bose gases: role of quantum and thermal fluctuations[J]. Physical Review A, 61, 063615(2000).

    [59] Ma X D, Ma Y L, Huang G X. Analytical calculations on Landau damping of collective modes in anisotropic Bose-Einstein condensates[J]. Physical Review A, 75, 013628(2007).

    [60] Ma X D, Zhou Y, Ma Y L et al. Landau damping of collective modes in a harmonically trapped Bose-Einstein condensate[J]. Chinese Physics, 15, 1871-1878(2006).

    [61] Ma X D, Ma Y L, Huang G X. Landau damping of collective modes in a disc-shaped Bose-Einstein condensate[J]. Chinese Physics Letters, 24, 616-619(2007).

    [62] Ma X D, Yang Z J, Lu J Z et al. Landau damping of collective mode in a quasi-two-dimensional repulsive Bose-Einstein condensate[J]. Chinese Physics B, 20, 070307(2011).

    [63] Yang Z J, Chai Z L, Li C X et al. Landau damping of collective mode in a quasi-one-dimensional repulsive Bose-Einstein condensate[J]. Communications in Theoretical Physics, 57, 789-794(2012).

    [64] Chai Z L, Zhou Y, Ma X D. Landau damping and frequency-shift of monopole mode in an elongated-rubidium Bose-Einstein condensate[J]. Acta Physica Sinica, 62, 130307(2013).

    [65] Rahmut A, Peng S Q, Ma X D. Landau damping and frequency-shift of a quadrupole mode in a disc-shaped rubidium Bose-Einstein condensate[J]. Chinese Physics B, 23, 090311(2014).

    [66] Peng S Q, Rahumt A, Ma X D. Landau damping and frequency-shift of a monopole mode in a spherical rubidium Bose-Einstein condensate[J]. Journal of Atomic and Molecular Physics, 32, 1018-1026(2015).

    [67] Zhao J Y, Li C X, Ma X D. Landau damping and frequency-shift of (0, 0, 2) scissors mode in a disc-shaped Bose-Einstein condensate[J]. Acta Physica Sinica, 68, 230304(2019).

    [68] Bhattacherjee A B. Damping in two-component Bose gas[J]. Modern Physics Letters B, 28, 1450029(2014).

    [69] Yang D, Ma X D. Theoretical formula of HFB mean field for collective excitation damping in two-component BEC[J]. Journal of Xinjiang Normal University (Natural Sciences Edition), 39, 17-28(2020).

    [70] Moniri S M, Yavari H, Darsheshdar E. Effect of long-range 1/r interactions on the Landau damping in a Bose-Fermi mixture[J]. The European Physical Journal Plus, 131, 122-135(2016).

    [71] Moniri S M, Yavari H, Darsheshdar E. Landau damping in a dipolar Bose-Fermi mixture in the Bose-Einstein condensation (BEC) limit[J]. Chinese Physics B, 25, 126701(2016).

    [72] Hohenberg P C, Martin P C. Microscopic theory of superfluid helium[J]. Annals of Physics, 34, 291-359(1965).

    [73] Andreev A F, Khalatnikov I M. Sound in liquid helium II near absolute zero[J]. Soviet Physics JETP, 17, 1384-1386(1963).

    [74] Lifshitz E M, Pitaevskii L P[M]. Physical kinetics(1998).

    Ying Chen, Yu Zhou, Xiaodong Ma. Landau Damping of Collective Excitation in Homogeneous Bose-Einstein Condensate[J]. Acta Optica Sinica, 2022, 42(16): 1627001
    Download Citation