• Laser & Optoelectronics Progress
  • Vol. 57, Issue 13, 130101 (2020)
Min Nie1, Yixin Zhang1、*, Guang Yang1、2, Meiling Zhang1, Aijing Sun1, and Changxing Pei3
Author Affiliations
  • 1School of Communication and Information Engineering, Xi'an University of Posts & Telecommunications, Xi'an, Shannxi 710121, China;
  • 2School of Electronics and Information, Northwestern Polytechnical University, Xi'an, Shannxi 710072, China
  • 3State Key Laboratory of Integrated Service Networks, Xi'an University of Electronic Science and Technology, Xi'an, Shannxi 710071, China
  • show less
    DOI: 10.3788/LOP57.130101 Cite this Article Set citation alerts
    Min Nie, Yixin Zhang, Guang Yang, Meiling Zhang, Aijing Sun, Changxing Pei. Influences of Ice Crystal Particles on the Detection Performance of Quantum Interference Radar[J]. Laser & Optoelectronics Progress, 2020, 57(13): 130101 Copy Citation Text show less
    References

    [1] Wang H Q, Liu K, Cheng Y Q et al. The advances in quantum radar[J]. Acta Electronica Sinica, 45, 492-500(2017).

    [2] Jiang T, Sun J. The principle and development of quantum radar detection target[J]. Journal of China Academy of Electronics and Information Technology, 9, 10-16(2014).

    [3] Jiang K B, Lee H, Gerry C C et al. Super-resolving quantum radar: coherent-state sources with homodyne detection suffice to beat the diffraction limit[J]. Journal of Applied Physics, 114, 193102(2013).

    [4] Wu Q, Bai Y C, Zhang X G. Performance analysis of measurement methods for interference quantum radar[J]. Journal of Nanjing University (Natural Sciences), 52, 939-945(2016).

    [5] Allen E H, Karageorgis M. Radar systems. -05-20[2019-07-29]. https:∥patents.glgoo.top/patent/US7375802B2/en.(2008).

    [6] Myers J M. Speaking of sensing in the language of quantum mechanics[J]. Proceedings of SPIE, 6573, 657302(2007).

    [7] Lanzagorta M, Lanzagorta M[M]. 量子雷达, 54-59(2013).

         [M]. Quantum radar, 54-59(2013).

    [8] Xiao H T, Liu K, Fan H Q. Overview of quantum radar and target detection performance[J]. Journal of National University of Defense Technology, 36, 140-145(2014).

    [9] Gallagher M W, Connolly P J, Whiteway J et al. An overview of the microphysical structure of cirrus clouds observed during EMERALD-1[J]. Quarterly Journal of the Royal Meteorological Society, 131, 1143-1169(2006).

    [10] Sun X M. Study on wave propagation and scattering characteristics of atmospheric discrete random media Xi'an:[D]. Xidian University, 21-30(2007).

    [11] Xu S L, Hu Y H, Zhao N X et al. Impact of metal target's atom lattice structure on its quantum radar cross-section[J]. Acta Physica Sinica, 64, 154203(2015).

    [12] Li X, Nie M, Yang G et al. The strategy and performance simulation of quantum entangled radar's survivability[J]. Acta Photonica Sinica, 44, 1127002(2015).

    [13] Xu Z H, Li W, Xu Q et al. Research on scattering section of surface quantum radar based on simulation of spectral link[J]. Journal of Air Force Engineering University (Natural Science Edition), 20, 90-95(2019).

    [14] Wang S, Ren Y C, Rao R Z et al. Influence of atmospheric scintillation on detection performance of coherent state quantum interferometric radar[J]. Chinese Journal of Lasers, 45, 0810002(2018).

    [15] Wang S, Ren Y C, Rao R Z et al. Influence of atmosphere attenuation on quantum interferometric radar[J]. Acta Physica Sinica, 66, 150301(2017).

    [16] Yang P, Bi L, Baum B A et al. Spectrally consistent scattering, absorption, and polarization properties of atmospheric ice crystals at wavelengths from 0.2 to 100 μm[J]. Journal of the Atmospheric Sciences, 70, 330-347(2013).

    [17] Zhang L. Study on the radiative transmission and scattering properties of cirrus clouds Xi'an:[D]. Xidian University, 23-24(2010).

    [19] Li T F, Li W, Yang F et al. Polarization error and compensation in quantum communication using satellites[J]. Chinese Journal of Quantum Electronics, 32, 678-685(2015).

    [20] Wei A H, Zhao W, Han B et al. Simulative study of optical pulse propagation in water based on Fournier-Forand and Henyey-Greenstein volume scattering functions[J]. Acta Optica Sinica, 33, 0601003(2013).

    [21] Strohbehn J, Clifford S. Polarization and angle-of-arrival fluctuations for a plane wave propagated through a turbulent medium[J]. IEEE Transactions on Antennas and Propagation, 15, 416-421(1967).

    [22] Tang S R, Nie M, Yang G et al. Influence of space dusty plasmas on the performance of quantum satellite communication[J]. Acta Photonica Sinica, 46, 1206002(2017).

    [23] Li F J, Zou X F, Cui L et al. Portable polarization-entangled quantum photon source[J]. Laser & Optoelectronics Progress, 56, 092701(2019).

    [24] Shi P, Zhao S C, Li W D et al. Bit error rate and key generation rate for underwater quantum key distribution[J]. Periodical of Ocean University of China, 47, 114-120(2017).

    [25] Pan X M, Sheng X Q. Accurate and efficient evaluation of spatial electromagnetic responses of large scale targets[J]. IEEE Transactions on Antennas and Propagation, 62, 4746-4753(2014).

    [26] Hufford G. Amodel for the complex permittivity of ice at frequencies below 1 THz[J]. International Journal of Infrared and Millimeter Waves, 12, 677-682(1991).

    Min Nie, Yixin Zhang, Guang Yang, Meiling Zhang, Aijing Sun, Changxing Pei. Influences of Ice Crystal Particles on the Detection Performance of Quantum Interference Radar[J]. Laser & Optoelectronics Progress, 2020, 57(13): 130101
    Download Citation