• Photonics Research
  • Vol. 5, Issue 6, B39 (2017)
Takahisa Harayama1、*, Satoshi Sunada2, and Susumu Shinohara1
Author Affiliations
  • 1Department of Applied Physics, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
  • 2Faculty of Mechanical Engineering, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
  • show less
    DOI: 10.1364/PRJ.5.000B39 Cite this Article Set citation alerts
    Takahisa Harayama, Satoshi Sunada, Susumu Shinohara. Universal single-mode lasing in fully chaotic two-dimensional microcavity lasers under continuous-wave operation with large pumping power [Invited][J]. Photonics Research, 2017, 5(6): B39 Copy Citation Text show less
    References

    [1] H.-J. Stöckmann. Quantum Chaos: An Introduction(1999).

    [2] F. Haake. Quantum Signatures of Chaos(2000).

    [3] K. Nakamura, T. Harayama. Quantum Chaos and Quantum Dots(2004).

    [4] O. Bohigas, M. J. Giannoni, C. Schmit. Characterization of chaotic quantum spectra and universality of level fluctuation laws. Phys. Rev. Lett., 52, 1-4(1984).

    [5] G. Casati, F. Valz-Gris, I. Guarneri. On the connection between quantization of nonintegrable systems and statistical theory of spectra. Lett. Nuovo Cimento Soc. Ital. Fis., 28, 279-282(1980).

    [6] M. V. Berry. Quantizing a classically ergodic system: Sinai’s billiard and the KKR method. Ann. Phys. (N.Y.), 131, 163-216(1981).

    [7] M. V. Berry. Semiclassical theory of spectral rigidity. Proc. R. Soc. London Ser. A, 400, 229-251(1985).

    [8] M. Sieber. Leading off-diagonal approximation for the spectral form factor for uniformly hyperbolic systems. J. Phys. A, 35, L613-L619(2002).

    [9] S. Müller, S. Heusler, P. Braun, F. Haake, A. Altland. Periodic-orbit theory of universality in quantum chaos. Phys. Rev. Lett., 93, 014103(2004).

    [10] S. Heusler, S. Müller, A. Altland, P. Braun, F. Haake. Periodic-orbit theory of level correlations. Phys. Rev. Lett., 98, 044103(2007).

    [11] M. Sieber, K. Richter. Correlations between periodic orbits and their role in spectral statistics. Phys. Scr., T90, 128-133(2001).

    [12] R. A. Jalabert, H. U. Baranger, A. D. Stone. Conductance fluctuations in the ballistic regime: a probe of quantum chaos?. Phys. Rev. Lett., 65, 2442-2445(1990).

    [13] C. M. Marcus, A. J. Rimberg, R. M. Westervelt, P. F. Hopkins, A. C. Gossard. Conductance fluctuations and chaotic scattering in ballistic microstructures. Phys. Rev. Lett., 69, 506-509(1992).

    [14] J. U. Nöckel, A. D. Stone. Ray and wave chaos in asymmetric resonant optical cavities. Nature, 385, 45-47(1997).

    [15] C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, A. Y. Cho. High-power directional emission from microlasers with chaotic resonators. Science, 280, 1556-1564(1998).

    [16] S.-B. Lee, J.-H. Lee, J.-S. Chang, H.-J. Moon, S. W. Kim, K. An. Observation of scarred modes in asymmetrically deformed microcylinder lasers. Phys. Rev. Lett., 88, 033903(2002).

    [17] S.-Y. Lee, S. Rim, J. W. Ryu, T. Y. Kwon, M. Choi, C.-M. Kim. Quasiscarred resonances in a spiral-shaped microcavity. Phys. Rev. Lett., 93, 164102(2004).

    [18] H. G. L. Schwefel, N. B. Rex, H. E. Tureci, R. K. Chang, A. D. Stone, T. Ben-Messaoud, J. Zyss. Dramatic shape sensitivity of directional emission patterns from similarly deformed cylindrical polymer lasers. J. Opt. Soc. Am. B, 21, 923-934(2004).

    [19] V. A. Podolskiy, E. Narimanov, W. Fang, H. Cao. Chaotic microlasers based on dynamical localization. Proc. Natl. Acad. Sci. USA, 101, 10498-10500(2004).

    [20] J. Wiersig. Formation of long-lived, scarlike modes near avoided resonance crossings in optical microcavities. Phys. Rev. Lett., 97, 253901(2006).

    [21] J. Wiersig, M. Hentschel. Combining directional light output and ultralow loss in deformed microdisks. Phys. Rev. Lett., 100, 033901(2008).

    [22] E. Bogomolny, R. Dubertrand, C. Schmit. Trace formula for dieletric cavities: I. General properties. Phys. Rev. E, 78, 056202(2008).

    [23] S. Shinohara, T. Harayama, T. Fukushima, M. Hentschel, T. Sasaki, E. E. Narimanov. Chaos-assisted directional light emission from microcavity lasers. Phys. Rev. Lett., 104, 163902(2010).

    [24] Q. Song, L. Ge, B. Redding, H. Cao. Channeling chaotic rays into waveguides for efficient collection of microcavity emission. Phys. Rev. Lett., 108, 243902(2012).

    [25] R. Sarma, L. Ge, J. Wiersig, H. Cao. Rotating optical microcavities with broken chiral symmetry. Phys. Rev. Lett., 114, 053903(2015).

    [26] H. Cao, J. Wiersig. Dielectric microcavities: model systems for wave chaos and non-Hermitian physics. Rev. Mod. Phys., 87, 61-111(2015).

    [27] T. Harayama, S. Shinohara. Two-dimensional microcavity lasers. Laser Photon. Rev., 5, 247-271(2011).

    [28] S. Sunada, T. Fukushima, S. Shinohara, T. Harayama, M. Adachi. Stable single-wavelength emission from fully chaotic microcavity lasers. Phys. Rev. A, 88, 013802(2013).

    [29] S. Sunada, S. Shinohara, T. Fukushima, T. Harayama. Signature of wave chaos in spectral characteristics of microcavity lasers. Phys. Rev. Lett., 116, 203903(2016).

    [30] M. Fisher. The renormalization group in the theory of critical behavior. Rev. Mod. Phys., 46, 597-616(1974).

    [31] T. Harayama, P. Davis, K. S. Ikeda. Stable oscillations of a spatially chaotic wave function in a microstadium laser. Phys. Rev. Lett., 90, 063901(2003).

    [32] T. Harayama, S. Sunada, K. S. Ikeda. Theory of two-dimensional microcavity lasers. Phys. Rev. A, 72, 013803(2005).

    [33] H. E. Türeci, A. D. Stone, B. Collier. Self-consistent multimode lasing theory for complex or random lasing media. Phys. Rev. A, 74, 043822(2006).

    [34] H. E. Türeci, A. D. Stone, L. Ge. Theory of the spatial structure of nonlinear lasing modes. Phys. Rev. A, 76, 013813(2007).

    [35] W. E. Lamb. Theory of an optical maser. Phys. Rev. A, 134, A1429-A1450(1964).

    [36] M. Sargent, M. O. Scully, W. E. Lamb. Laser Physics(1974).

    [37] M. Sargent. Theory of a multimode quasiequilibrium semiconductor laser. Phys. Rev. A, 48, 717-726(1993).

    [38] T. Harayama, T. Fukushima, S. Sunada, K. S. Ikeda. Asymmetric stationary lasing patterns in 2D symmetric microcavities. Phys. Rev. Lett., 91, 073903(2003).

    [39] H. E. Türeci, L. Ge, S. Rotter, A. D. Stone. Strong interactions in multimode random lasers. Science, 320, 643-646(2008).

    [40] L. Ge, R. J. Tandy, A. D. Stone, H. E. Türeci. Quantitative verification of ab initio self-consistent laser theory. Opt. Express, 16, 16895-16902(2008).

    [41] H. E. Türeci, A. D. Stone, L. Ge, S. Rotter, R. J. Tandy. Ab initio self-consistent laser theory and random lasers. Nonlinearity, 22, C1-C18(2009).

    [42] L. Ge, Y. D. Chong, A. D. Stone. Steady-state ab initio laser theory: generalizations and analytic results. Phys. Rev. A, 82, 063824(2010).

    [43] A. Cerjan, A. D. Stone. Steady-state ab initio theory of lasers with injected signals. Phys. Rev. A, 90, 013840(2014).

    [44] S. Esterhazy, D. Liu, M. Liertzer, A. Cerjan, L. Ge, K. G. Makris, A. D. Stone. Scalable numerical approach for the steady-state ab initio laser theory. Phys. Rev. A, 90, 023816(2014).

    [45] A. Pick, A. Cerjan, D. Liu, A. W. Rodriguez, A. D. Stone, Y. D. Chong, S. G. Johnson. Ab initio multimode linewidth theory for arbitrary inhomogeneous laser cavities. Phys. Rev. A, 91, 063806(2015).

    [46] A. I. Shnirelman. Ergodic properties of eigenfunctions. Usp. Mat. Nauk, 29, 181-182(1974).

    [47] Y. Colin de Verdie’re. Ergodicité et fonctions propres du laplacien. Commun. Math. Phys., 102, 497-502(1985).

    [48] S. Zelditch. Uniform distribution of eigenfunctions on compact hyperbolic surfaces. Duke Math. J., 55, 919-941(1987).

    [49] B. Helffer, A. Martinez, D. Robert. Ergodicité et limite semiclassique. Commun. Math. Phys., 109, 313-326(1987).

    [50] S. Zelditch, M. Zworski. Ergodicity of eigenfunctions for ergodic billiards. Commun. Math. Phys., 175, 673-682(1996).

    [51] A. Bäcker, R. Schubert, P. Stifter. Rate of quantum ergodicity in Euclidean billiards. Phys. Rev. E, 57, 5425-5447(1998).

    [52] H. Schomerus, J. Tworzydlo. Quantum-to-classical crossover of quasibound states in open quantum systems. Phys. Rev. Lett., 93, 154102(2004).

    [53] S. Nonnenmacher, M. Zworski. Fractal Weyl laws in discrete models of chaotic scattering. J. Phys. A, 38, 10683-10702(2005).

    [54] J. P. Keating, M. Novaes, S. D. Prado, M. Sieber. Semiclassical structure of chaotic resonance eigenfunctions. Phys. Rev. Lett., 97, 150406(2006).

    [55] D. L. Shepelyansky. Fractal Weyl law for quantum fractal eigenstates. Phys. Rev. E, 77, 015202(2008).

    [56] M. Novaes. Resonances in open quantum maps. J. Phys. A, 46, 143001(2013).

    [57] T. Harayama, S. Shinohara. Ray-wave correspondence in chaotic dielectric billiards. Phys. Rev. E, 92, 042916(2015).

    [58] E. G. Altmann. Emission from dielectric cavities in terms of invariant sets of the chaotic ray dynamics. Phys. Rev. A, 79, 013830(2009).

    [59] B. Redding, A. Cerjan, X. Huang, M. L. Lee, A. D. Stone, M. A. Choma, H. Cao. Low-spatial coherence electrically-pumped semiconductor laser for speckle-free full-field imaging. Proc. Natl. Acad. Sci. USA, 112, 1304-1309(2015).

    [60] M. Choi, S. Shinohara, T. Harayama. Dependence of far-field characteristics on the number of lasing modes in stadium-shaped InGaAsP microlasers. Opt. Express, 16, 17544-17559(2008).

    [61] A. Cerjan, B. Redding, L. Ge, S. F. Liew, H. Cao, A. D. Stone. Controlling mode competition by tailoring the spatial pump distribution in a laser: a resonance-based approach. Opt. Express, 24, 26006-26015(2016).

    [62] S. Sunada, T. Harayama, K. S. Ikeda. Multimode lasing in fully chaotic cavity lasers. Phys. Rev. E, 71, 046209(2005).

    [63] H. Fu, H. Haken. Multifrequency operation in a short-cavity standing-wave laser. Phys. Rev. A, 43, 2446-2454(1991).

    CLP Journals

    [1] Li Ge, Liang Feng, Harald G. L. Schwefel. Optical microcavities: new understandings and developments[J]. Photonics Research, 2017, 5(6): OM1

    [2] Yating Wan, Daisuke Inoue, Daehwan Jung, Justin C. Norman, Chen Shang, Arthur C. Gossard, John E. Bowers. Directly modulated quantum dot lasers on silicon with a milliampere threshold and high temperature stability[J]. Photonics Research, 2018, 6(8): 776

    Takahisa Harayama, Satoshi Sunada, Susumu Shinohara. Universal single-mode lasing in fully chaotic two-dimensional microcavity lasers under continuous-wave operation with large pumping power [Invited][J]. Photonics Research, 2017, 5(6): B39
    Download Citation