• Infrared and Laser Engineering
  • Vol. 47, Issue 12, 1202001 (2018)
You Lixing1、2、3、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/irla201847.1202001 Cite this Article
    You Lixing. Status and prospect of superconducting nanowire single photon detection[J]. Infrared and Laser Engineering, 2018, 47(12): 1202001 Copy Citation Text show less
    References

    [1] Marsili F, Verma V B, Stern J A, et al. Detecting single infrared photons with 93% system efficiency[J]. Nature Photonics, 2013, 7(3): 210-214.

    [2] Zhang W, You L, Li H, et al. NbN superconducting nanowire single photon detector with efficiency over 90% at 1 550 nm wavelength operational at compact cryocooler temperature[J]. Science China Physics, Mechanics & Astronomy, 2017, 60(12): 120314.

    [3] Zhang W J, Yang X Y, Li H, et al. Fiber-coupled superconducting nanowire single-photon detectors integrated with a bandpass filter on the fiber end-face[J]. Superconductor Science and Technology, 2018, 31(3): 035012.

    [4] Yang X Y, Li H, Zhang W J, et al. Superconducting nanowire single photon detector with on-chip bandpass filter[J]. Optics Express, 2014, 22(13): 16267-16272.

    [5] Konstantin S, Yury V, Alexander D, et al. Dependence of dark count rates in superconducting single photon detectors on the filtering effect of standard single mode optical fibers[J]. Applied Physics Express, 2015, 8(2): 022501.

    [6] Esmaeil Zadeh I, Los J W N, Gourgues R B M, et al. Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution[J]. APL Photonics, 2017, 2(11): 111301.

    [7] Korzh B, Zhao Q, Frasca S, et al. Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector[J]. arXiv Preprint arXiv, 2018, 1804: 06839.

    [8] Inderbitzin K, Engel A, Schilling A, et al. An ultra-fast superconducting Nb nanowire single-photon detector for soft x-rays[J]. Applied Physics Letters, 2012, 101(16): 162601.

    [9] Marsili F, Bellei F, Najafi F, et al. Efficient single photon detection from 500 nm to 5 μm wavelength[J]. Nano Letters, 2012, 12(9): 4799-4804.

    [10] Wang Y, Li H, You L, et al. Broadband near-infrared superconducting nanowire single-photon detector with efficiency over 50%[J]. IEEE Transactions on Applied Superconductivity, 2017, 27(4): 2200904.

    [11] Chen L, Schwarzer D, Lau J A, et al. Ultra-sensitive mid-infrared emission spectrometer with sub-ns temporal resolution[J]. Optics Express, 2018, 26(12): 14859-14868.

    [12] Yin H L, Chen T Y, Yu Z W, et al. Measurement-device-independent quantum key distribution over a 404 km optical fiber[J]. Physical Review Letters, 2016, 117(19): 190501.

    [13] Tang Y L, Yin H L, Zhao Q, et al. Measurement-device-independent quantum key distribution over untrustful metropolitan network[J]. Physical Review X, 2016, 6(1): 011024.

    [14] Tang Y L, Yin H L, Chen S J, et al. Measurement-device-independent quantum key distribution over 200 km[J]. Physical Review Letters, 2014, 113(19): 190501.

    [15] Abellán C, Acín A, Alarcón A, et al. Challenging local realism with human choices[J]. Nature, 2018, 557(7704): 212-216.

    [16] Sun Q C, Mao Y L, Chen S J, et al. Quantum teleportation with independent sources and prior entanglement distribution over a network[J]. Nat Photon, 2016, 10(10): 671-675.

    [17] Liu Y, Yuan X, Li M H, et al. High-speed device-independent quantum random number generation without a detection loophole[J]. Physical Review Letters, 2018, 120(1): 010503.

    [18] Guan J Y, Xu F, Yin H L, et al. Observation of quantum fingerprinting beating the classical limit[J]. Physical Review Letters, 2016, 116(24): 240502.

    [19] Wang H, Li W, Jiang X, et al. Toward scalable boson sampling with photon loss[J]. Physical Review Letters, 2018, 120(23): 230502.

    [20] He Y, Ding X, Su Z E, et al. Time-bin-encoded boson sampling with a single-photon device[J]. Physical Review Letters, 2017, 118(19): 190501.

    [21] Cornwell D M. NASA′s optical communications program for 2015 and beyond[C]//SPIE, 2015, 9354: 93540E.

    [22] Grein M E, Kerman A J, Dauler E A, et al. An optical receiver for the Lunar Laser Communication Demonstration based on photon-counting superconducting nanowires[C]// SPIE, 2015, 9492: 949208.

    [23] Li H, Chen S, You L, et al. Superconducting nanowire single photon detector at 532 nm and demonstration in satellite laser ranging[J]. Optics Express, 2016, 24(4): 3535-3542.

    [24] Xue L, Li Z, Zhang L, et al. Satellite laser ranging using superconducting nanowire single-photon detectors at 1 064 nm wavelength[J]. Optics Letters, 2016, 41(16): 3848-3851.

    [25] Zhu J, Chen Y, Zhang L, et al. Demonstration of measuring sea fog with an SNSPD-based lidar system[J]. Scientific Reports, 2017, 7(1): 15113.

    [26] Shangguan M, Xia H, Wang C, et al. Dual-frequency Doppler lidar for wind detection with a superconducting nanowire single-photon detector[J]. Optics Letters, 2017, 42(18): 3541-3544.

    You Lixing. Status and prospect of superconducting nanowire single photon detection[J]. Infrared and Laser Engineering, 2018, 47(12): 1202001
    Download Citation