• Acta Optica Sinica
  • Vol. 41, Issue 6, 0606001 (2021)
Jiyang Tian1, Guangye Yang1、*, Sandan Wang2、3, and Jinpeng Yuan2、3
Author Affiliations
  • 1School of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi 0 30001, China
  • 2State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, Shanxi 0 30006, China
  • 3Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 0 30006, China
  • show less
    DOI: 10.3788/AOS202141.0606001 Cite this Article Set citation alerts
    Jiyang Tian, Guangye Yang, Sandan Wang, Jinpeng Yuan. Optimization of Optical Coherence Tomography Light Source Based on Pump Pulse of Medical Photonic Crystal Fibers[J]. Acta Optica Sinica, 2021, 41(6): 0606001 Copy Citation Text show less
    References

    [1] Gambichler T, Orlikov A, Vasa R et al. In vivo optical coherence tomography of basal cell carcinoma[J]. Journal of Dermatological Science, 45, 167-173(2007). http://www.sciencedirect.com/science/article/pii/S0923181106003501

    [2] Gelikonov V M, Gelikonov G V, Ksenofontov S Y et al. New approaches in broadband fiber-optical interferometry for optical coherent tomography[J]. Radiophysics and Quantum Electronics, 46, 550-564(2003). http://link.springer.com/article/10.1023/B%3ARAQE.0000019870.95905.95

    [3] Zhang X, Zhang H F, Jiao S. Optical coherence photoacoustic microscopy: accomplishing optical coherence tomography and photoacoustic microscopy with a single light source[J]. Journal of Biomedical Optics, 17, 030502(2012). http://europepmc.org/articles/PMC3380948/

    [4] Dunkers J P, Sanders D P, Hunston D L et al. Comparison of optical coherence tomography, X-ray computed tomography, and confocal microscopy results from an impact damaged epoxy/e-glass composite[J]. The Journal of Adhesion, 78, 129-154(2002). http://www.tandfonline.com/doi/abs/10.1080/00218460210386?tab=permissions&scroll=top

    [5] Moh Y. Recent progress in optical fiber research[M]. London: InTech(2012).

    [6] Begum F, Namihira Y. Razzak S M A, et al. Flattened chromatic dispersion in square photonic crystal fibers with low confinement losses[J]. Optical Review, 16, 54-58(2009). http://www.springerlink.com/content/8868173837794745/

    [7] Liang T, Feng X M. Research progress toward flat supercontinuum generation in fibers[J]. Laser & Optoelectronics Progress, 53, 060002(2016).

    [8] Ohmi M, Yamazaki R, Kunizawa N et al. In vivo observation of micro-tissue structures by high-resolution optical coherence tomography with a femtosecond laser[J]. Japanese Society for Medical and Biological Engineering, 42, 404-410(2004). http://ci.nii.ac.jp/naid/130004266051

    [9] Kinjo T, Namihira Y, Arakaki K et al. Polarization-maintaining photonic crystal fibers with near-zero flattened dispersion in 1.06 μm waveband for medical applications[J]. Optical Review, 17, 66-73(2010). http://link.springer.com/article/10.1007/s10043-010-0012-9

    [10] Kinjo T, Namihira Y, Arakaki K et al. Design of highly nonlinear dispersion-flattened square photonic crystal fiber for medical applications[J]. Optical Review, 17, 61-65(2010).

    [11] Namihira Y, Liu J J, Koga T et al. Design of highly nonlinear octagonal photonic crystal fiber with near-zero flattened dispersion at 1.31 μm waveband[J]. Optical Review, 18, 436-440(2011). http://link.springer.com/article/10.1007/s10043-011-0082-3

    [12] Hossain M A, Namihira Y. Razzak S M A. Supercontinuum generation at 1.55 μm using highly nonlinear photonic crystal fiber for telecommunication and medical applications[J]. Optical Review, 19, 315-319(2012).

    [13] Sorahi-Nobar M, Maleki-Javan A. Supercontinuum generation for ultrahigh-resolution OCT via selective liquid infiltration approach[J]. Radioengineering, 27, 16-21(2018). http://www.researchgate.net/publication/324674491_Supercontinuum_Generation_for_Ultrahigh-Resolution_OCT_via_Selective_Liquid_Infiltration_Approach

    [14] Zeylikovich I, Alfano R R. Coherence properties of the supercontinuum source[J]. Applied Physics B, 77, 265-268(2003). http://link.springer.com/article/10.1007/s00340-003-1221-8

    [15] Zeylikovich I, Kartazaev V, Alfano R R. Spectral, temporal, and coherence properties of supercontinuum generation in microstructure fiber[J]. Journal of the Optical Society of America B, 22, 1453-1460(2005).

    [16] Semenova V A, Tsypkin A V, Putilin S E et al. A method for the coherence measurement of the supercontinuum source using Michelson interferometer[J]. Journal of Physics: Conference Series, 536, 012027(2014). http://adsabs.harvard.edu/abs/2014JPhCS.536a2027S

    [17] Chauhan P, Kumar A, Kalra Y. Mid-infrared broadband supercontinuum generation in a highly nonlinear rectangular core chalcogenide photonic crystal fiber[J]. Optical Fiber Technology, 46, 174-178(2018). http://www.sciencedirect.com/science/article/pii/S1068520018303596

    [18] Heidt A M. Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibers[J]. Journal of the Optical Society of America B, 27, 550-559(2010).

    [19] Zhang T T, Shi W H. Numerical research on ultraviolet supercontinuum generation in photonic crystal fiber[J]. Chinese Journal of Lasers, 47, 0301012(2020).

    [20] Liu S L, Chen D N, Liu W et al. Supercontinuum generation based on all normal dispersion photonic crystal fiber?[J]. Acta Physica Sinica, 62, 184210(2013).

    [21] Shi W H, Cao Y, Wang M Y et al[J]. Mid-infrared supercontinuum generated in photonic crystal fibers and its control Study on Optical Communications, 2015, 40-42.

    [22] Agrawal G P[M]. Nonlinear fiber optics, 39-44(2007).

    [23] James G F, Michael R H, Brett E B et al. Handbook of optical coherence tomography[M]. New York: Marcel Dekker, 66-99(2002).

    [24] Finot C, Kibler B, Provost L et al. Beneficial impact of wave-breaking for coherent continuum formation in normally dispersive nonlinear fibers[J]. Journal of the Optical Society of America B, 25, 1938-1948(2008). http://www.opticsinfobase.org/josab/abstract.cfm?uri=josab-25-11-1938

    [25] Wang J, Shi Y M. Study of chirps induced by the higher-order nonlinear effects in the photonic crystal fiber[J]. Acta Physica Sinica, 55, 2820-2824(2006).

    [26] Ohmi M, Ohnishi Y, Yoden K et al. In vitro simultaneous measurement of refractive index and thickness of biological tissue by the low coherence interferometry[J]. IEEE Transactions on Biomedical Engineering, 47, 1266-1270(2000). http://www.ncbi.nlm.nih.gov/pubmed/11008428

    [27] Zhou B, Jiang Y L, Chen X W et al. Numerical simulation on propagation of ultra-short laser pulse in photonic crystal fibers with different group velocity dispersion parameters[J]. Acta Optica Sinica, 27, 323-328(2007).

    [28] Yuan W, Mavadia-Shukla J, Xi J F et al. Optimal operational conditions for supercontinuum-based ultrahigh-resolution endoscopic OCT imaging[J]. Optics Letters, 41, 250-253(2016).

    [29] Nishizawa N, Kawagoe H, Yamanaka M et al. Wavelength dependence of ultrahigh-resolution optical coherence tomography using supercontinuum for biomedical imaging[J]. IEEE Journal of Selected Topics in Quantum Electronics, 25, 1-15(2019). http://ieeexplore.ieee.org/document/8408748/

    Jiyang Tian, Guangye Yang, Sandan Wang, Jinpeng Yuan. Optimization of Optical Coherence Tomography Light Source Based on Pump Pulse of Medical Photonic Crystal Fibers[J]. Acta Optica Sinica, 2021, 41(6): 0606001
    Download Citation