• Journal of Inorganic Materials
  • Vol. 37, Issue 4, 413 (2022)
References

[1] H G CHOI, Y H JUNG, D K KIM. Solvothermal synthesis of tungsten oxide nanorod/nanowire/nanosheet. Journal of the American Ceramic Society, 88, 1684-1686(2005).

[2] H S SHIM, J W KIM, Y E SUNG et al. Electrochromic properties of tungsten oxide nanowires fabricated by electrospinning method. Solar Energy Materials and Solar Cells, 93, 2062-2068(2009).

[4] S F WANG, W R FAN, Z C LIU et al. Advances on tungsten oxide based photochromic materials: strategies to improve their photochromic properties. Journal of Materials Chemistry C, 6, 191-212(2018).

[5] K MOVLAEE, P PERIASAMY, T KRISHNAKUMAR et al. Microwave-assisted synthesis and characterization of WOx nanostructures for gas sensor application. Journal of Alloys and Compounds, 762, 745-753(2018).

[6] J SOLIS, S SAUKKO, L KISH et al. Semiconductor gas sensors based on nanostructured tungsten oxide. Thin Solid Films, 391, 255-260(2001).

[7] F Y WANG, L F SONG, H C ZHANG et al. One-dimensional metal-oxide nanostructures for solar photocatalyticwater-splitting. Journal of Electronic Materials, 46, 4716-4724(2017).

[8] H QUAN, Y GAO, W WANG. Tungsten oxide-based visible light-driven photocatalysts: crystal and electronic structures and strategies for photocatalytic efficiency enhancement. Inorganic Chemistry Frontiers, 7, 817-838(2020).

[9] J LEE, C S JO, B PARK. Simple fabrication of flexible electrodes with high metal-oxide content: electrospun reduced tungsten oxide/carbon nanofibers for lithium ion battery application. Nanoscale, 6, 10147-10155(2014).

[10] D B MIGAS, V L SHAPOSHNIKOV, V E BORISISENKO. Tungsten oxides. II. The metallic nature of Magnéli phases. Journal of Applied Physics, 108, 093714-1-6(2010).

[11] X HUANG, H J ZHAI, J LI et al. On the structure and chemical bonding of tri-tungsten oxide cluster W3On- and W3On (n=7-10): W3O8 as a potential model for O-deficient defect sites in tungsten oxides. Journal of Physics and Chemistry A, 110, 85-92(2006).

[12] Y X QIN, W W XIE, Y LIU et al. Thermal-oxidative growth of aligned W18O49 nanowire arrays for high performance gas sensor. Sensors and Actuators B: Chemical, 223, 487-495(2016).

[13] R CHATTEN, A V CHADWICK, A ROUGER et al. The oxygen vacany in crystal phases of WO3. Journal of Physics and Chemistry B, 109, 3146-3156(2005).

[14] H D ZHENG, Z OUJ, M S STRANO et al. Nanostructured tungsten oxide-properties, synthesis, and applications. Advanced Functional Materials, 21, 2175-2196(2011).

[15] F G WANG, D C VALENTIN, G PACCHIONI. Semiconductor- to-metal transition in WO3-x: nature of the oxygen vacancy. Physical Review B, 84, 073103-1-3(2011).

[16] S F WANG, W E FAN, Z C LIU et al. Advances on tungsten oxide based photochromic materials: strategies to improve their photochromic properties. Journal of Materials Chemistry C, 6, 191-212(2018).

[17] T HE, J N YAO. Photochromic materials based on tungsten oxide. Journal of Materials Chemistry, 17, 4547-4557(2007).

[18] S VEMURIER, K K BHARATHI, S K GULLAPLLI et al. Effect of structure and size on the electrical of nanocrystalline WO3 films. ACS Applied Materials Interfaces, 2, 2623-2628(2006).

[19] A POLACZEK, M PEKATA, Z OBUSZKO et al. Magnetic susceptibility and thermoelectric power of tungsten intermediary oxides. Journal of Physics: Condensed Matter, 6, 7909-7919(1994).

[20] R HU, H S WU, K Q HONG. Growth of uniform tungsten oxide nanowires with small diameter via a two-step heating process. Journal of Crystal Growth, 306, 395-399(2007).

[21] Y BAEK, K YONG. Controlled growth and characterization of tungsten oxide nanowires using thermal evaporation of WO3 powder. The Journal of Physical Chemistry C, 111, 1213-1218(2007).

[22] S VADDIRAJU, H CHANDRASEKARANh, M K SUNKARA. Vapor phase synthesis of tungsten nanowires. Journal of the American Chemical Society, 125, 10792-10793(2003).

[23] B MIAO, W ZENG, S HUSSAIN et al. Large scale hydrothermal synthesis of monodisperse hexagonal WO3nanowire and the growth mechanism. Materials Letters, 147, 12-15(2015).

[24] J ZHOU, Y YAN, C Y ZHANG. A low-temperature solid-phase method to synthesize highly fluorecent carbon nitride dots with tunable emission. Chemical Communication, 49, 8605-8607(2013).

[25] C GUO, S YIN, M YAN et al. Morphology-controlled synthesis of W18O49 nanostructures and their near-infrared absorption properties. Inorganic Chemistry, 51, 4763-4771(2012).

[26] V CHAKRAPANI. Modulation of stoichiometry, morphology and composition of transition metal oxide nanostructure through hot wire chemical vapor deposition. Journal of Materials Research, 31, 17-25(2006).

[27] C M WU, S NASEEM, M H CHOU et al. Recent advance in tungsten oxide based materials and their applications. Frontier in Materials, 6, 49-1-17(2019).

[28] T T DAI, Z H DENG, G MENG et al. Controllable synthesis and gas sensing properties of bridged tungsten oxide nanowires. Acta Physico-Chimica Sinica, 37, 1911036-1-11(2021).

[29] Y LI, Y BANDO, D GOLBERG. Quasi-aligned single-crystalline W18O49 nanotubes and nanowires. Advanced Materials, 15, 1294-1296(2003).

[30] C X GUANG, S X OUYANG, P LI et al. Ultrathin W18O49nanowires with diameter below 1 nm: synthesis, near-infrared absorption, photoluminescence, and photochemical reduction of carbon dioxide. Angewandte Chemie International Edition, 51, 2395-2399(2012).

[31] H X GU, C S GUO, S H ZHANG et al. Highly efficient, near-infrared and visible light modulated electrochromic devices based on polyoxometalates and W18O49 nanowires. ACS Nano, 12, 559-567(2018).

[32] S IIJIMA. Helical microtubes of graphitic carbon. Nature, 354, 56-58(1991).

[33] C NIE, A M GALIBERT, B SOULA et al. A new insight on the mechanisms of filling closed carbon nanotubes with molten metal iodides. Carbon, 110, 48-50(2016).

[34] I V ANOSHKIN, A V TALYZIN, A G NASIBULIN et al. Coronene Encapsulation in single-walled carbon nanotubes: stacked columns, peapods, and nanoribbons. ChemPhysChem, 15, 1660-1665(2014).

[35] T W CHAMBERLAIN, J BISKUPEK, G A RANCE et al. Size, structure, and helical twist of graphenenanoribbons controlled by confinement in carbon nanotubes. ACS Nano, 6, 3943-3953(2012).

[36] M NAGATA, S SHUKLA, Y NAKANISHI et al. Isolation of single-wired transition-metal monochalcogenidesby carbon nanotubes. Nano Letters, 19, 4845-4851(2019).

[37] K HIRAHARA, K SUENAGA, S BANDOW et al. One- dimensional metallofullerene crystal generated inside single-walled carbon nanotubes. Physical Review Letters, 85, 5384-5387(2000).

[38] H J GAO, Y KONG, D X CUI et al. Spontaneous insertion of DNA oligonucleotides into carbon nanotubes. Nano Letters, 3, 471-473(2003).

[40] U K GAUTAM, P M COSTA, Y BANDO et al. Recent developments in inorganically filled carbon nanotubes: successes and challenges. Science and Technology of Advanced Materials, 11, 054501(2010).

[41] A E ANDREI, S F NIKOLAY, I V NIKOLAY et al. Size- dependent structure relation between nanotubes and encapsulated nanocrystal. Nano Letters, 17, 805-810(2005).

[42] M C SCHNIZLER, M M OLIVEIRA, D UGARTE et al. One-step route to iron oxide-filled carbon nanotubes and bucky-onions based on the pyrolysis of organmetallic precursors. Chemical Physics Letters, 381, 541-548(2003).

[43] P X HOU, C LIU, H M CHENG. Purification of carbon nanotubes. Carbon, 46, 2003-2025(2008).

[44] P AJAYAN, T EBBESEN, T ICHIHASHI et al. Opening carbon nanotubes with oxygen and implications for filling. Nature, 362, 522-525(1993).

[47] L J LI, T W LIN, J DOIG et al. Crystal-encapsulation-induced band-structure change in single-walled carbon nanotubes: photoluminescence and Raman spectra. Physical Review B, 74, 245414(2006).

[48] Z Y WANG, K K ZHAO, H LI et al. Ultra-narrow WS2nanoribbons encapsulated in carbon nanotubes. Journal of Materials Chemistry, 21, 171-180(2011).

[49] S PENNYCOOK. Z-contrast STEM for materials science. Ultramicroscopy, 30, 58-69(1989).