• Photonics Insights
  • Vol. 1, Issue 2, R05 (2022)
Xinwei Li1、2, Dasom Kim2、3, Yincheng Liu1, and Junichiro Kono2、4、5、*
Author Affiliations
  • 1Department of Physics, California Institute of Technology, Pasadena, USA
  • 2Department of Electrical and Computer Engineering, Rice University, Houston, USA
  • 3Applied Physics Graduate Program, Smalley-Curl Institute, Rice University, Houston, USA
  • 4Department of Physics and Astronomy, Rice University, Houston, USA
  • 5Department of Materials Science and NanoEngineering, Rice University, Houston, USA
  • show less
    DOI: 10.3788/PI.2022.R05 Cite this Article Set citation alerts
    Xinwei Li, Dasom Kim, Yincheng Liu, Junichiro Kono. Terahertz spin dynamics in rare-earth orthoferrites[J]. Photonics Insights, 2022, 1(2): R05 Copy Citation Text show less
    References

    [1] ATLAS Collaboration, G. A. Stewart, W. Lampl. How to review 4 million lines of ATLAS code. J. Phys., 898, 072013(2017).

    [2] I. Žutić, J. Fabian, S. Das Sarma. Spintronics: fundamentals and applications. Rev. Mod. Phys., 76, 323(2004).

    [3] J. Sinova, I. Žutić. New moves of the spintronics tango. Nat. Mater., 11, 368(2012).

    [4] V. Baltz et al. Antiferromagnetic spintronics. Rev. Mod. Phys., 90, 015005(2018).

    [5] T. Jungwirth et al. Antiferromagnetic spintronics. Nat. Nanotechnol., 11, 231(2016).

    [6] D. G. Feitelson(1992).

    [7] A. V. Chumak et al. Magnon spintronics. Nat. Phys., 11, 453(2015).

    [8] A. Mahmoud et al. Introduction to spin wave computing. J. Appl. Phys., 128, 161101(2020).

    [9] B. Lenk et al. The building blocks of magnonics. Phys. Rep., 507, 107(2011).

    [10] G. Csaba, Á. Papp, W. Porod. Perspectives of using spin waves for computing and signal processing. Phys. Lett. A, 381, 1471(2017).

    [11] The rise of quantum materials. Nat. Phys., 12, 105(2016).

    [12] P. W. Anderson. More is different: broken symmetry and the nature of the hierarchical structure of science. Science, 177, 393(1972).

    [13] A. Alexandradinata et al. The future of the correlated electron problem(2020).

    [14] M. Imada, A. Fujimori, Y. Tokura. Metal-insulator transitions. Rev. Mod. Phys., 70, 1039(1998).

    [15] H.-C. Jiang, T. P. Devereaux. Superconductivity in the doped Hubbard model and its interplay with next-nearest hopping t. Science, 365, 1424(2019).

    [16] A. C. Hewson. The Kondo Problem to Heavy Fermions(1993).

    [17] J. Strecka, M. Jascur. A brief account of the Ising and Ising-like models: mean-field, effective-field and exact results(2015).

    [18] A. Kitaev. Anyons in an exactly solved model and beyond. Ann. Phys., 321, 2(2006).

    [19] F. Krausz et al. Femtosecond solid-state lasers. IEEE J. Sel. Top. Quantum Electron., 28, 2097(1992).

    [20] S. Backus et al. High power ultrafast lasers. Rev. Sci. Instrum., 69, 1207(1998).

    [21] R. D. Averitt et al. Ultrafast conductivity dynamics in colossal magnetoresistance manganites. Phys. Rev. Lett., 87, 017401(2001).

    [22] J. Demsar et al. Pair-breaking and superconducting state recovery dynamics in MgB2. Phys. Rev. Lett., 91, 267002(2003).

    [23] J. Demsar et al. Quasiparticle relaxation dynamics in heavy fermion compounds. Phys. Rev. Lett., 91, 027401(2003).

    [24] N. Gedik et al. Single-quasiparticle stability and quasiparticle-pair decay in YBa2Cu3O6.5. Phys. Rev. B, 70, 014504(2004).

    [25] E. E. M. Chia et al. Quasiparticle relaxation across the spin-density-wave gap in the itinerant antiferromagnet UNiGa5. Phys. Rev. B, 74, 140409(2006).

    [26] J. Demsar, K. Biljaković, D. Mihailovic. Single particle and collective excitations in the one-dimensional charge density wave solid K0.3MoO3 probed in real time by femtosecond spectroscopy. Phys. Rev. Lett., 83, 800(1999).

    [27] T. Mertelj et al. Quasiparticle relaxation dynamics in spin-density-wave and superconducting SmFeAsO1−xFx single crystals. Phys. Rev. B, 81, 224504(2010).

    [28] F. Novelli et al. Witnessing the formation and relaxation of dressed quasi-particles in a strongly correlated electron system. Nat. Commun., 5, 5112(2014).

    [29] X. Li et al. Keldysh space control of charge dynamics in a strongly driven Mott insulator. Phys. Rev. Lett., 128, 187402(2022).

    [30] S. Wall et al. Quantum interference between charge excitation paths in a solid-state Mott insulator. Nat. Phys., 7, 114(2011).

    [31] A. Kirilyuk, A. V. Kimel, T. Rasing. Ultrafast optical manipulation of magnetic order. Rev. Mod. Phys., 82, 2731(2010).

    [32] A. Polkovnikov et al. Colloquium: nonequilibrium dynamics of closed interacting quantum systems. Rev. Mod. Phys., 83, 863(2011).

    [33] M. Heyl. Dynamical quantum phase transitions: a review. Rep. Prog. Phys., 81, 054001(2018).

    [34] A. Mitra. Quantum quench dynamics. Annu. Rev. Condens. Matter Phys., 9, 245(2018).

    [35] T. Kinoshita, T. Wenger, D. S. Weiss. A quantum Newton’s cradle. Nature, 440, 900(2006).

    [36] X.-C. Zhang, J. Xu. Introduction to THz Wave Photonics, 27(2010).

    [37] R. W. Boyd. Nonlinear Optics(2008).

    [38] H. A. Hafez et al. Intense terahertz radiation and their applications. J. Opt., 18, 093004(2016).

    [39] H. Aoki et al. Nonequilibrium dynamical mean-field theory and its applications. Rev. Mod. Phys., 86, 779(2014).

    [40] U. Schollwöck. The density-matrix renormalization group. Rev. Mod. Phys., 77, 259(2005).

    [41] . Fundamentals of Time-Dependent Density Functional Theory, 837(2012).

    [42] G. Stefanucci, R. van Leeuwen. Nonequilibrium Many-Body Theory of Quantum Systems: A Modern Introduction(2013).

    [43] Y. Murakami, P. Werner. Nonequilibrium steady states of electric field driven Mott insulators. Phys. Rev. B, 98, 075102(2018).

    [44] N. Tancogne-Dejean, M. A. Sentef, A. Rubio. Ultrafast transient absorption spectroscopy of the charge-transfer insulator NiO: beyond the dynamical Franz-Keldysh effect. Phys. Rev. B, 102, 115106(2020).

    [45] T. Oka. Nonlinear doublon production in a Mott insulator: Landau-Dykhne method applied to an integrable model. Phys. Rev. B, 86, 075148(2012).

    [46] M. H. Michael et al. Generalized Fresnel-Floquet equations for driven quantum materials. Phys. Rev. B, 105, 174301(2022).

    [47] D. N. Basov et al. Electrodynamics of correlated electron materials. Rev. Mod. Phys., 83, 471(2011).

    [48] N. P. Armitage. Electrodynamics of correlated electron systems(2009).

    [49] J. Walowski, M. Münzenberg. Perspective: ultrafast magnetism and THz spintronics. J. Appl. Phys., 120, 140901(2016).

    [50] C. N. R. Rao. Transition metal oxides. Annu. Rev. Phys. Chem., 40, 291(1989).

    [51] Y. Tokura. Correlated-electron physics in transition-metal oxides. Phys. Today, 56, 50(2003).

    [52] C. Schlenker, C. Schlenker et al. Charge density wave instabilities and transport properties of the low dimensional molybdenum bronzes and oxides. Low-Dimensional Electronic Properties of Molybdenum Bronzes and Oxides, 11, 159(1989).

    [53] Y. Tokura, N. Nagaosa. Orbital physics in transition-metal oxides. Science, 288, 462(2000).

    [54] S. Dong, J.-M. Liu. Recent progress of multiferroic perovskite manganites. Mod. Phys. Lett. B, 26, 1230004(2012).

    [55] K. M. Shen, J. C. S. Davis. Cuprate high-Tc superconductors. Mater. Today, 11, 14(2008).

    [56] C. Wang, Y. Liu. Ultrafast optical manipulation of magnetic order in ferromagnetic materials. Nano Converg., 7, 35(2020).

    [57] A. M. Kalashnikova, A. V. Kimel, R. V. Pisarev. Ultrafast opto-magnetism. Phys. Usp., 58, 969(2015).

    [58] C. Giannetti et al. Ultrafast optical spectroscopy of strongly correlated materials and high-temperature superconductors: a non-equilibrium approach. Adv. Phys., 65, 58(2016).

    [59] R. D. Averitt, A. J. Taylor. Ultrafast optical and far-infrared quasiparticle dynamics in correlated electron materials. J. Phys., 14, R1357(2002).

    [60] J. Zhang, R. D. Averitt. Dynamics and control in complex transition metal oxides. Annu. Rev. Mater. Res., 44, 19(2014).

    [61] M. Gandolfi et al. Emergent ultrafast phenomena in correlated oxides and heterostructures. Phys. Scr., 92, 034004(2017).

    [62] A. de la Torre et al. Colloquium: nonthermal pathways to ultrafast control in quantum materials. Rev. Mod. Phys., 93, 041002(2021).

    [63] R. Mankowsky, M. Först, A. Cavalleri. Non-equilibrium control of complex solids by nonlinear phononics. Rep. Prog. Phys., 79, 064503(2016).

    [64] A. S. Disa, T. F. Nova, A. Cavalleri. Engineering crystal structures with light. Nat. Phys., 17, 1087(2021).

    [65] T. Oka, S. Kitamura. Floquet engineering of quantum materials. Annu. Rev. Condens. Matter Phys., 10, 387(2019).

    [66] M. Bukov, L. D’Alessio, A. Polkovnikov. Universal high-frequency behavior of periodically driven systems: from dynamical stabilization to Floquet engineering. Adv. Phys., 64, 139(2015).

    [67] P. Němec et al. Antiferromagnetic opto-spintronics. Nat. Phys., 14, 229(2018).

    [68] O. Gomonay et al. Antiferromagnetic spin textures and dynamics. Nat. Phys., 14, 213(2018).

    [69] E. V. Gomonay, V. M. Loktev. Spintronics of antiferromagnetic systems (review article). Low Temp. Phys., 40, 17(2014).

    [70] J. Lu et al. Two-dimensional spectroscopy at terahertz frequencies. Top. Curr. Chem., 376, 6(2018).

    [71] F. Schlawin, D. M. Kennes, M. A. Sentef. Cavity quantum materials. Appl. Phys. Rev., 9, 011312(2022).

    [72] J. Bloch et al. Strongly correlated electron–photon systems. Nature, 606, 41(2022).

    [73] P. Forn-Díaz et al. Ultrastrong coupling regimes of light-matter interaction. Rev. Mod. Phys., 91, 025005(2019).

    [74] A. F. Kockum et al. Ultrastrong coupling between light and matter. Nat. Rev. Phys., 1, 19(2019).

    [75] R. L. White. Review of recent work on the magnetic and spectroscopic properties of the rare-earth orthoferrites. J. Appl. Phys., 40, 1061(1969).

    [76] E. F. Bertaut. Representation analysis of magnetic structures. Acta Cryst., 24, 217(1968).

    [77] M. S. Dresselhaus, G. Dresselhaus, A. Jorio. Group Theory: Application to the Physics of Condensed Matter(2008).

    [78] T. Yamaguchi, K. Tsushima. Magnetic symmetry of rare-earth orthochromites and orthoferrites. Phys. Rev. B, 8, 5187(1973).

    [79] E. Li et al. Spin switching in single crystal PrFeO3 and spin configuration diagram of rare earth orthoferrites. J. Alloys Compd., 811, 152043(2019).

    [80] T. Yamaguchi. Theory of spin reorientation in rare-earth orthochromites and orthoferrites. J. Phys. Chem. Solids, 35, 479(1974).

    [81] M. P. Zic et al. Coupled spin waves and crystalline electric field levels in candidate multiferroic ErFeO3. J. Appl. Phys., 130, 014102(2021).

    [82] R. M. Bozorth, V. Kramer, J. P. Remeika. Magnetization in single crystals of some rare-earth orthoferrites. Phys. Rev. Lett., 1, 3(1958).

    [83] G. Gorodetsky, B. Sharon, S. Shtrikman. Magnetic properties of an antiferromagnetic orthoferrite. J. Appl. Phys., 39, 1371(1968).

    [84] S. J. Yuan et al. First-order spin reorientation transition and specific-heat anomaly in CeFeO3. J. Appl. Phys., 114, 113909(2013).

    [85] C. Ritter, M. Ceretti, W. Paulus. Determination of the magnetic structures in orthoferrite CeFeO3 by neutron powder diffraction: first order spin reorientation and appearance of an ordered Ce-moment. J. Phys., 33, 215802(2021).

    [86] G. P. Vorob’ev et al. Unusual nature of spin reorientation in HoFeO3. Zh. Eksp. Teor. Fiz, 95, 1049(1989).

    [87] A. M. Balbashov et al. Anomalies of high-frequency magnetic properties and new orientational transitions in HoFeO3. JETP, 68, 629(1989).

    [88] X. Zeng et al. Terahertz time domain spectroscopic investigation of spin reorientation transitions in HoFeO3. Opt. Express, 23, 31956(2015).

    [89] A. K. Ovsianikov et al. Magnetic phase diagram of HoFeO3 by neutron diffraction. J. Magn. Magn. Mater., 557, 169431(2022).

    [90] K. P. Belov et al. On the character of phase transitions in ErFeO3. Phys. Status Solidi, 36, 415(1976).

    [91] A. M. Kadomtseva, I. B. Krynetski, V. M. Matveev. Nature of the spontaneous and field-induced low-temperature orientational transitions in erbium orthoferrite. JETP, 52, 732(1980).

    [92] G. Deng et al. The magnetic structures and transitions of a potential multiferroic orthoferrite ErFeO3. J. Appl. Phys., 117, 164105(2015).

    [93] M. Marezio, J. P. Remeika, P. D. Dernier. The crystal chemistry of the rare earth orthoferrites. Acta Cryst., 26, 2008(1970).

    [94] D. L. Wood, J. P. Remeika, E. D. Kolb. Optical spectra of rare-earth orthoferrites. J. Appl. Phys., 41, 5315(1970).

    [95] S. M. Shapiro, J. D. Axe, J. P. Remeika. Neutron-scattering studies of spin waves in rare-earth orthoferrites. Phys. Rev. B, 10, 2014(1974).

    [96] N. Koshizuka, K. Hayashi. Raman scattering from magnon excitations in RFeO3. J. Phys. Soc. Jpn., 57, 4418(1988).

    [97] Z. Y. Zhao et al. Ground state and magnetic phase transitions of orthoferrite DyFeO3. Phys. Rev. B, 89, 224405(2014).

    [98] J. Zaanen, G. A. Sawatzky, J. W. Allen. Band gaps and electronic structure of transition-metal compounds. Phys. Rev. Lett., 55, 418(1985).

    [99] T. Arima, Y. Tokura, J. B. Torrance. Variation of optical gaps in perovskite-type 3d transition-metal oxides. Phys. Rev. B, 48, 17006(1993).

    [100] N. Singh, J. Y. Rhee, S. Auluck. Electronic and magneto-optical properties of rare-earth orthoferrites RFeO3 (R = Y, Sm, Eu, Gd and Lu). J. Korean Phy. Soc., 53, 806(2008).

    [101] A. M. Clogston. Interaction of magnetic crystals with radiation in the range 104–105 cm−1. J. Appl. Phys., 31, S198(1960).

    [102] H. C. Gupta, M. Kumar Singh, L. M. Tiwari. Lattice dynamic investigation of Raman and infrared wavenumbers at the zone center of orthorhombic RFeO3 (R = Tb, Dy, Ho, Er, Tm) perovskites. J. Raman Spectrosc., 33, 67(2002).

    [103] G. V. S. Rao, C. N. R. Rao, J. R. Ferraro. Infrared and electronic spectra of rare earth perovskites: ortho-chromites, -manganites and -ferrites. Appl. Spectrosc., 24, 436(1970).

    [104] S. Venugopalan et al. Magnetic and vibrational excitations in rare-earth orthoferrites: a Raman scattering study. Phys. Rev. B, 31, 1490(1985).

    [105] M. C. Weber et al. Raman spectroscopy of rare-earth orthoferrites RFeO3 (R = La, Sm, Eu, Gd, Tb, Dy). Phys. Rev. B, 94, 214103(2016).

    [106] S. E. Hahn et al. Inelastic neutron scattering studies of YFeO3. Phys. Rev. B, 89, 014420(2014).

    [107] G. F. Herrmann. Resonance and high frequency susceptibility in canted antiferromagnetic substances. J. Phys. Chem. Solids, 24, 597(1963).

    [108] G. F. Herrmann. Magnetic resonances and susceptibility in orthoferrites. Phys. Rev., 133, A1334(1964).

    [109] R. M. White, R. J. Nemanich, C. Herring. Light scattering from magnetic excitations in orthoferrites. Phys. Rev. B, 25, 1822(1982).

    [110] N. Koshizuka, K. Hayashi. Temperature dependences of one-magnon light scattering in RFeO3. J. Magn. Magn. Mater., 31–34, 569(1983).

    [111] J. R. Shane. Resonance frequencies of the orthoferrites in the spin reorientation region. Phys. Rev. Lett., 20, 728(1968).

    [112] Z. Q. Qiu, S. D. Bader. Surface magneto-optic Kerr effect. Rev. Sci. Instrum., 71, 1243(2000).

    [113] A. B. Schmidt et al. Spin-dependent electron dynamics in front of a ferromagnetic surface. Phys. Rev. Lett., 95, 107402(2005).

    [114] A. Scholl et al. Ultrafast spin dynamics of ferromagnetic thin films observed by fs spin-resolved two-photon photoemission. Phys. Rev. Lett., 79, 5146(1997).

    [115] C. Stamm et al. Femtosecond modification of electron localization and transfer of angular momentum in nickel. Nat. Mater., 6, 740(2007).

    [116] M. P. M. Dean et al. Ultrafast energy- and momentum-resolved dynamics of magnetic correlations in the photo-doped Mott insulator Sr2IrO4. Nat. Mater., 15, 601(2016).

    [117] D. G. Mazzone et al. Laser-induced transient magnons in Sr3Ir2O7 throughout the Brillouin zone. Proc. Natl. Acad. Sci. U.S.A., 118, e2103696118(2021).

    [118] A. V. Kimel et al. Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses. Nature, 435, 655(2005).

    [119] R. Iida et al. Spectral dependence of photoinduced spin precession in DyFeO3. Phys. Rev. B, 84, 064402(2011).

    [120] H. Regensburger, R. Vollmer, J. Kirschner. Time-resolved magnetization-induced second-harmonic generation from the Ni(110) surface. Phys. Rev. B, 61, 14716(2000).

    [121] B. Koopmans et al. Ultrafast magneto-optics in nickel: magnetism or optics?. Phys. Rev. Lett., 85, 844(2000).

    [122] G. P. Zhang et al. Paradigm of the time-resolved magneto-optical Kerr effect for femtosecond magnetism. Nat. Phys., 5, 499(2009).

    [123] R. V. Mikhaylovskiy et al. Ultrafast optical modification of exchange interactions in iron oxides. Nat. Commun., 6, 8190(2015).

    [124] L. Prochaska et al. Singular charge fluctuations at a magnetic quantum critical point. Science, 367, 285(2020).

    [125] X. Li et al. Observation of photoinduced terahertz gain in GaAs quantum wells: evidence for radiative two-exciton-to-biexciton scattering. Phys. Rev. Lett., 125, 167401(2020).

    [126] G. Bossé et al. Low energy electrodynamics of the Kondo-lattice antiferromagnet CeCu2Ge2. Phys. Rev. B, 85, 155105(2012).

    [127] N. J. Laurita et al. Singlet-triplet excitations and long-range entanglement in the spin-orbital liquid candidate FeSc2S4. Phys. Rev. Lett., 114, 207201(2015).

    [128] B. Cheng et al. Dielectric anomalies and interactions in the three-dimensional quadratic band touching Luttinger semimetal Pr2Ir2O7. Nat. Commun., 8, 2097(2017).

    [129] E. Baldini et al. Discovery of the soft electronic modes of the trimeron order in magnetite. Nat. Phys., 16, 541(2020).

    [130] L. Pan et al. A measure of monopole inertia in the quantum spin ice Yb2Ti2O7. Nat. Phys., 12, 361(2016).

    [131] X. Zhang et al. Hierarchy of exchange interactions in the triangular-lattice spin liquid YbMgGaO4. Phys. Rev. X, 8, 031001(2018).

    [132] P. Chauhan et al. Tunable magnon interactions in a ferromagnetic spin-1 chain. Phys. Rev. Lett., 124, 037203(2020).

    [133] R. Matsunaga et al. Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor. Science, 345, 1145(2014).

    [134] H. Chu et al. Phase-resolved Higgs response in superconducting cuprates. Nat. Commun., 11, 1793(2020).

    [135] K. W. Kim et al. Ultrafast transient generation of spin-density-wave order in the normal state of BaFe2As2 driven by coherent lattice vibrations. Nat. Mater., 11, 497(2012).

    [136] F. Y. Gao et al. Snapshots of a light-induced metastable hidden phase driven by the collapse of charge order. Sci. Adv., 8, eabp9076(2022).

    [137] M. Mitrano et al. Possible light-induced superconductivity in K3C60 at high temperature. Nature, 530, 461(2016).

    [138] X. Li et al. Terahertz Faraday and Kerr rotation spectroscopy of Bi1−xSbx films in high magnetic fields up to 30 tesla. Phys. Rev. B, 100, 115145(2019).

    [139] K. A. Cremin et al. Photoenhanced metastable c-axis electrodynamics in stripe-ordered cuprate La1.885Ba0.115CuO4. Proc. Natl. Acad. Sci. U.S.A., 116, 19875(2019).

    [140] A. M. Balbashov et al. Submillimeter spectroscopy of antiferromagnetic dielectrics: rare-earth orthoferrites. High Frequency Processes in Magnetic Materials, 56(1995).

    [141] A. M. Balbashov et al. High-frequency magnetic properties of dysprosium orthoferrite. JETP, 61, 573(1985).

    [142] A. M. Balbashov et al. Soft mode and energy gap in spin-wave spectrum in a second-order orientational phase transition. AFMR in YFeO3. JETP, 66(1987).

    [143] A. Baydin et al. Time-domain terahertz spectroscopy in high magnetic fields. Front. Optoelectron., 14, 110(2021).

    [144] Q. Wu, X.-C. Zhang. Free-space electro-optic sampling of terahertz beams. Appl. Phys. Lett., 67, 3523(1995).

    [145] G. T. Noe et al. Single-shot terahertz time-domain spectroscopy in pulsed high magnetic fields. Opt. Express, 24, 30328(2016).

    [146] Y. Minami et al. Single-shot measurement of a terahertz electric-field waveform using a reflective echelon mirror. Appl. Phys. Lett., 103, 051103(2013).

    [147] H. Y. Hwang et al. A review of non-linear terahertz spectroscopy with ultrashort tabletop-laser pulses. J. Mod. Opt., 62, 1447(2015).

    [148] X. Zhu et al. High field single- to few-cycle THz generation with lithium niobate. Photonics, 8, 183(2021).

    [149] M. Liu et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature, 487, 345(2012).

    [150] X. Yang et al. Terahertz-light quantum tuning of a metastable emergent phase hidden by superconductivity. Nat. Mater., 17, 586(2018).

    [151] X. Li et al. Terahertz field–induced ferroelectricity in quantum paraelectric SrTiO3. Science, 364, 1079(2019).

    [152] A. X. Gray et al. Ultrafast terahertz field control of electronic and structural interactions in vanadium dioxide. Phys. Rev. B, 98, 045104(2018).

    [153] T. A. Miller et al. Terahertz field control of in-plane orbital order in La0.5Sr1.5MnO4. Nat. Commun., 6, 8175(2015).

    [154] H. Yamakawa et al. Mott transition by an impulsive dielectric breakdown. Nat. Mater., 16, 1100(2017).

    [155] J. Hebling et al. Velocity matching by pulse front tilting for large area THz-pulse generation. Opt. Express, 10, 1161(2002).

    [156] J. Hebling et al. Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities. J. Opt. Soc. Am. B, 25, B6(2008).

    [157] K.-L. Yeh et al. Generation of 10µJ ultrashort terahertz pulses by optical rectification. Appl. Phys. Lett., 90, 171121(2007).

    [158] M. Jazbinsek et al. Organic crystals for THz photonics. Appl. Sci., 9, 882(2019).

    [159] S.-H. Lee et al. Recent progress in acentric core structures for highly efficient nonlinear optical crystals and their supramolecular interactions and terahertz applications. CrystEngComm, 18, 7180(2016).

    [160] C. Vicario, B. Monoszlai, C. P. Hauri. GV/m single-cycle terahertz fields from a laser-driven large-size partitioned organic crystal. Phys. Rev. Lett., 112, 213901(2014).

    [161] C. P. Hauri et al. Strong-field single-cycle THz pulses generated in an organic crystal. Appl. Phys. Lett., 99, 161116(2011).

    [162] A. Baltuška, T. Fuji, T. Kobayashi. Controlling the carrier-envelope phase of ultrashort light pulses with optical parametric amplifiers. Phys. Rev. Lett., 88, 133901(2002).

    [163] F. Junginger et al. Single-cycle multiterahertz transients with peak fields above 10 MV/cm. Opt. Lett., 35, 2645(2010).

    [164] A. Sell, A. Leitenstorfer, R. Huber. Phase-locked generation and field-resolved detection of widely tunable terahertz pulses with amplitudes exceeding 100 MV/cm. Opt. Lett., 33, 2767(2008).

    [165] B. Liu et al. Generation of narrowband, high-intensity, carrier-envelope phase-stable pulses tunable between 4 and 18 THz. Opt. Lett., 42, 129(2017).

    [166] M. Knorr et al. Phase-locked multi-terahertz electric fields exceeding 13 MV/cm at a 190 kHz repetition rate. Opt. Lett., 42, 4367(2017).

    [167] M. Musheghyan et al. Tunable, few-cycle, CEP-stable mid-IR optical parametric amplifier for strong field applications. J. Phys. B, 53, 185402(2020).

    [168] K. Yoshioka et al. Subcycle mid-infrared coherent transients at 4 MHz repetition rate applicable to light-wave-driven scanning tunneling microscopy. Opt. Lett., 44, 5350(2019).

    [169] X. Li et al. Observation of Dicke cooperativity in magnetic interactions. Science, 361, 794(2018).

    [170] K. Yamaguchi et al. Terahertz time-domain observation of spin reorientation in orthoferrite ErFeO3 through magnetic free induction decay. Phys. Rev. Lett., 110, 137204(2013).

    [171] J. Jiang et al. Dynamical spin reorientation transition in NdFeO3 single crystal observed with polarized terahertz time domain spectroscopy. Appl. Phys. Lett., 103, 062403(2013).

    [172] T. Suemoto et al. Magnetization-free measurements of spin orientations in orthoferrites using terahertz time domain spectroscopy. Appl. Phys. Lett., 107, 042404(2015).

    [173] H. Horner, C. M. Varma. Nature of spin-reorientation transitions. Phys. Rev. Lett., 20, 845(1968).

    [174] J. Jiang et al. Magnetic-field dependence of strongly anisotropic spin reorientation transition in NdFeO3: a terahertz study. J. Phys., 28, 116002(2016).

    [175] X. Lin et al. Terahertz probes of magnetic field induced spin reorientation in YFeO3 single crystal. Appl. Phys. Lett., 106, 092403(2015).

    [176] J. Scola et al. Spin reorientation induced by a very high magnetic field in domain-structured YFeO3 films: Emergence of perpendicular anisotropy. Phys. Rev. B, 81, 174409(2010).

    [177] B. T. Smith, J. Yamamoto, E. E. Belli. Far-infrared transmittance of Tb, Ho, Tm, Er, and Yb orthoferrite. J. Opt. Soc. Am., 65, 605(1975).

    [178] A. A. Mukhin et al. Submillimeter and far IR spectroscopy of magneto- and electrodipolar rare-earth modes in the orthoferrite TmFeO3. Phys. Lett. A, 153, 499(1991).

    [179] K. Zhang et al. Resolving the spin reorientation and crystal-field transitions in TmFeO3 with terahertz transient. Sci. Rep., 6, 23648(2016).

    [180] R. V. Mikhaylovskiy et al. Selective excitation of terahertz magnetic and electric dipoles in Er3+ ions by femtosecond laser pulses in ErFeO3. Phys. Rev. Lett., 118, 017205(2017).

    [181] A. P. Pyatakov, A. K. Zvezdin. Magnetoelectric and multiferroic media. Phys. Usp., 182, 593(2012).

    [182] A. Pimenov et al. Possible evidence for electromagnons in multiferroic manganites. Nat. Phys., 2, 97(2006).

    [183] T. Kubacka et al. Large-amplitude spin dynamics driven by a THz pulse in resonance with an electromagnon. Science, 343, 1333(2014).

    [184] N. Kida, Y. Tokura. Terahertz magnetoelectric response via electromagnons in magnetic oxides. J. Magn. Magn. Mater., 324, 3512(2012).

    [185] A. Pimenov et al. Electromagnons in multiferroic manganites. J. Phys., 20, 434209(2008).

    [186] F. Matsukura, Y. Tokura, H. Ohno. Control of magnetism by electric fields. Nat. Nanotechnol., 10, 209(2015).

    [187] Y. Tokura. Multiferroics—toward strong coupling between magnetization and polarization in a solid. J. Magn. Magn. Mater., 310, 1145(2007).

    [188] Y. Tokunaga et al. Composite domain walls in a multiferroic perovskite ferrite. Nat. Mater., 8, 558(2009).

    [189] Y. Tokunaga et al. Magnetic-field-induced ferroelectric state in DyFeO3. Phys. Rev. Lett., 101, 097205(2008).

    [190] E. F. Bertaut et al. Structures magnetiques de TbFeO3. Solid State Commun., 5, 293(1967).

    [191] S. Artyukhin et al. Solitonic lattice and Yukawa forces in the rare-earth orthoferrite TbFeO3. Nat. Mater., 11, 694(2012).

    [192] J.-H. Lee et al. Spin-canting-induced improper ferroelectricity and spontaneous magnetization reversal in SmFeO3. Phys. Rev. Lett., 107, 117201(2011).

    [193] R. D. Johnson, N. Terada, P. G. Radaelli. Comment on “spin-canting-induced improper ferroelectricity and spontaneous magnetization reversal in SmFeO3. Phys. Rev. Lett., 108, 219701(2012).

    [194] C.-Y. Kuo et al. k = 0 magnetic structure and absence of ferroelectricity in SmFeO3. Phys. Rev. Lett., 113, 217203(2014).

    [195] T. N. Stanislavchuk et al. Magnon and electromagnon excitations in multiferroic DyFeO3. Phys. Rev. B, 93, 094403(2016).

    [196] T. N. Stanislavchuk et al. Far-IR magnetospectroscopy of magnons and electromagnons in TbFeO3 single crystals at low temperatures. Phys. Rev. B, 95, 054427(2017).

    [197] S. L. Gnatchenko et al. Two-step metamagnetic phase transition induced by a magnetic field parallel to the b-axis in DyFeO3. J. Magn. Magn. Mater., 129, 307(1994).

    [198] D. Awschalom, N. Samarth, D. Loss. Semiconductor Spintronics and Quantum Computation(2011).

    [199] J. R. Weber et al. Quantum computing with defects. Proc. Natl. Acad. Sci. U.S.A., 107, 8513(2010).

    [200] D. D. Awschalom et al. Quantum spintronics: engineering and manipulating atom-like spins in semiconductors. Science, 339, 1174(2013).

    [201] A. Ron et al. Ultrafast enhancement of ferromagnetic spin exchange induced by ligand-to-metal charge transfer. Phys. Rev. Lett., 125, 197203(2020).

    [202] T. Li et al. Femtosecond switching of magnetism via strongly correlated spin–charge quantum excitations. Nature, 496, 69(2013).

    [203] M. Matsubara et al. Ultrafast photoinduced insulator-ferromagnet transition in the perovskite manganite Gd0.55Sr0.45MnO3. Phys. Rev. Lett., 99, 207401(2007).

    [204] J. Wang et al. Ultrafast enhancement of ferromagnetism via photoexcited holes in GaMnAs. Phys. Rev. Lett., 98, 217401(2007).

    [205] D. Bossini et al. Femtosecond activation of magnetoelectricity. Nat. Phys, 14, 370(2018).

    [206] A. S. Disa et al. Polarizing an antiferromagnet by optical engineering of the crystal field. Nat. Phys., 16, 937(2020).

    [207] A. S. Disa et al. Optical stabilization of fluctuating high temperature ferromagnetism in YTiO3(2021).

    [208] M. Först et al. Driving magnetic order in a manganite by ultrafast lattice excitation. Phys. Rev. B, 84, 241104(2011).

    [209] E. Fradkin, S. A. Kivelson, J. M. Tranquada. Colloquium: theory of intertwined orders in high temperature superconductors. Rev. Mod. Phys., 87, 457(2015).

    [210] Z. Sun, A. J. Millis. Transient trapping into metastable states in systems with competing orders. Phys. Rev. X, 10, 021028(2020).

    [211] M. H. Kalthoff et al. Nonequilibrium phase transition in a driven-dissipative quantum antiferromagnet. Phys. Rev. Res., 4, 023115(2022).

    [212] K. Balzer et al. Nonthermal melting of Néel order in the Hubbard model. Phys. Rev. X, 5, 031039(2015).

    [213] M. Claassen et al. Dynamical time-reversal symmetry breaking and photo-induced chiral spin liquids in frustrated Mott insulators. Nat. Commun., 8, 1192(2017).

    [214] D. Golež et al. Mechanism of ultrafast relaxation of a photo-carrier in antiferromagnetic spin background. Phys. Rev. B, 89, 165118(2014).

    [215] J. Liu, K. Hejazi, L. Balents. Floquet engineering of multiorbital Mott insulators: applications to orthorhombic titanates. Phys. Rev. Lett., 121, 107201(2018).

    [216] E. Beaurepaire et al. Ultrafast spin dynamics in ferromagnetic nickel. Phys. Rev. Lett., 76, 4250(1996).

    [217] P. M. Oppeneer, A. Liebsch. Ultrafast demagnetization in Ni: theory of magneto-optics for non-equilibrium electron distributions. J. Phys., 16, 5519(2004).

    [218] J. Wang et al. Ultrafast magneto-optics in ferromagnetic III–V semiconductors. J. Phys., 18, R501(2006).

    [219] J. Wang et al. Ultrafast quenching of ferromagnetism in InMnAs induced by intense laser irradiation. Phys. Rev. Lett., 95, 167401(2005).

    [220] J. Wang et al. Femtosecond demagnetization and hot-hole relaxation in ferromagnetic Ga1−xMnxAs. Phys. Rev. B, 77, 235308(2008).

    [221] E. Kojima et al. Observation of the spin-charge thermal isolation of ferromagnetic Ga0.94Mn0.06As by time-resolved magneto-optical measurements. Phys. Rev. B, 68, 193203(2003).

    [222] S. A. Crooker et al. Terahertz spin precession and coherent transfer of angular momenta in magnetic quantum wells. Phys. Rev. Lett., 77, 2814(1996).

    [223] T. Ogasawara et al. General features of photoinduced spin dynamics in ferromagnetic and ferrimagnetic compounds. Phys. Rev. Lett., 94, 087202(2005).

    [224] B. Koopmans et al. Explaining the paradoxical diversity of ultrafast laser-induced demagnetization. Nat. Mater., 9, 259(2010).

    [225] A. V. Kimel et al. Laser-induced ultrafast spin reorientation in the antiferromagnet TmFeO3. Nature, 429, 850(2004).

    [226] J. A. de Jong et al. Laser-induced ultrafast spin dynamics in ErFeO3. Phys. Rev. B, 84, 104421(2011).

    [227] K. Yamaguchi et al. Dynamics of photoinduced change of magnetoanisotropy parameter in orthoferrites probed with terahertz excited coherent spin precession. Phys. Rev. B, 92, 064404(2015).

    [228] A. Ellens et al. Spectral-line-broadening study of the trivalent lanthanide-ion series. II. The variation of the electron-phonon coupling strength through the series. Phys. Rev. B, 55, 180(1997).

    [229] T. Kurihara et al. Reconfiguration of magnetic domain structures of ErFeO3 by intense terahertz free electron laser pulses. Sci. Rep., 10, 7321(2020).

    [230] D. Afanasiev, A. K. Zvezdin, A. V. Kimel. Laser-induced shift of the Morin point in antiferromagnetic DyFeO3. Opt. Express, 23, 23978(2015).

    [231] A. V. Kimel et al. Inertia-driven spin switching in antiferromagnets. Nat. Phys., 5, 727(2009).

    [232] J. A. de Jong et al. Coherent control of the route of an ultrafast magnetic phase transition via low-amplitude spin precession. Phys. Rev. Lett., 108, 157601(2012).

    [233] T. Kurihara et al. Macroscopic magnetization control by symmetry breaking of photoinduced spin reorientation with intense terahertz magnetic near field. Phys. Rev. Lett., 120, 107202(2018).

    [234] M. Först et al. Nonlinear phononics as an ultrafast route to lattice control. Nat. Phys., 7, 854(2011).

    [235] M. Fechner et al. Magnetophononics: ultrafast spin control through the lattice. Phys. Rev. Mater., 2, 064401(2018).

    [236] R. Mankowsky et al. Nonlinear lattice dynamics as a basis for enhanced superconductivity in YBa2Cu3O6.5. Nature, 516, 71(2014).

    [237] M. Först et al. Displacive lattice excitation through nonlinear phononics viewed by femtosecond X-ray diffraction. Solid State Commun., 169, 24(2013).

    [238] D. Afanasiev et al. Ultrafast control of magnetic interactions via light-driven phonons. Nat. Mater., 20, 607(2021).

    [239] P. G. Radaelli. Breaking symmetry with light: ultrafast ferroelectricity and magnetism from three-phonon coupling. Phys. Rev. B, 97, 085145(2018).

    [240] D. M. Juraschek, M. Fechner, N. A. Spaldin. Ultrafast structure switching through nonlinear phononics. Phys. Rev. Lett., 118, 054101(2017).

    [241] T. F. Nova et al. An effective magnetic field from optically driven phonons. Nat. Phys., 13, 132(2017).

    [242] D. M. Juraschek et al. Dynamical multiferroicity. Phys. Rev. Mater., 1, 014401(2017).

    [243] D. M. Juraschek, P. Narang, N. A. Spaldin. Phono-magnetic analogs to opto-magnetic effects. Phys. Rev. Res., 2, 043035(2020).

    [244] S. Baierl et al. Nonlinear spin control by terahertz-driven anisotropy fields. Nat. Photonics, 10, 715(2016).

    [245] G. Fitzky et al. Ultrafast control of magnetic anisotropy by resonant excitation of 4f electrons and phonons in Sm0.7Er0.3FeO3. Phys. Rev. Lett., 127, 107401(2021).

    [246] L. Chaix et al. Magneto- to electroactive transmutation of spin waves in ErMnO3. Phys. Rev. Lett., 112, 137201(2014).

    [247] R. V. Mikhaylovskiy et al. Terahertz magnetization dynamics induced by femtosecond resonant pumping of Dy3+ subsystem in the multisublattice antiferromagnet DyFeO3. Phys. Rev. B, 92, 094437(2015).

    [248] Y. H. Wang et al. Observation of Floquet-Bloch states on the surface of a topological insulator. Science, 342, 453(2013).

    [249] F. Mahmood et al. Selective scattering between Floquet–Bloch and Volkov states in a topological insulator. Nat. Phys., 12, 306(2016).

    [250] E. J. Sie et al. Large, valley-exclusive Bloch-Siegert shift in monolayer WS2. Science, 355, 1066(2017).

    [251] J.-Y. Shan et al. Giant modulation of optical nonlinearity by Floquet engineering. Nature, 600, 235(2021).

    [252] M. Nuske et al. Floquet dynamics in light-driven solids. Phys. Rev. Res., 2, 043408(2020).

    [253] N. H. Lindner, G. Refael, V. Galitski. Floquet topological insulator in semiconductor quantum wells. Nat. Phys., 7, 490(2011).

    [254] J. Cayssol et al. Floquet topological insulators. Phys. Status Solidi RRL, 7, 101(2013).

    [255] J. W. McIver et al. Light-induced anomalous Hall effect in graphene. Nat. Phys., 16, 38(2020).

    [256] J. H. Mentink, K. Balzer, M. Eckstein. Ultrafast and reversible control of the exchange interaction in Mott insulators. Nat. Commun., 6, 6708(2015).

    [257] K. Hejazi, J. Liu, L. Balents. Floquet spin and spin-orbital Hamiltonians and doublon-holon generations in periodically driven Mott insulators. Phys. Rev. B, 99, 205111(2019).

    [258] G. Batignani et al. Probing ultrafast photo-induced dynamics of the exchange energy in a Heisenberg antiferromagnet. Nat. Photonics, 9, 506(2015).

    [259] Y. Wang, T. P. Devereaux, C.-C. Chen. Theory of time-resolved Raman scattering in correlated systems: ultrafast engineering of spin dynamics and detection of thermalization. Phys. Rev. B, 98, 245106(2018).

    [260] J. Zhang et al. Observation of a discrete time crystal. Nature, 543, 217(2017).

    [261] J. H. Shirley. Solution of the Schrödinger equation with a Hamiltonian periodic in time. Phys. Rev., 138, B979(1965).

    [262] M. S. Rudner, N. H. Lindner. The Floquet engineer’s handbook(2020).

    [263] S. Chaudhary, D. Hsieh, G. Refael. Orbital Floquet engineering of exchange interactions in magnetic materials. Phys. Rev. B, 100, 220403(2019).

    [264] Y. Wang et al. X-ray scattering from light-driven spin fluctuations in a doped Mott insulator. Commun. Phys., 4, 212(2021).

    [265] A. Hirohata et al. Review on spintronics: principles and device applications. J. Magn. Magn. Mater., 509, 166711(2020).

    [266] M. N. Baibich et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett., 61, 2472(1988).

    [267] T. Miyazaki, N. Tezuka. Giant magnetic tunneling effect in Fe/Al2O3/Fe junction. J. Magn. Magn. Mater., 139, L231(1995).

    [268] L. Berger. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B, 54, 9353(1996).

    [269] S. Araki et al. Which spin valve for next giant magnetoresistance head generation?. J. Appl. Phys., 87, 5377(2000).

    [270] T. Jungwirth et al. The multiple directions of antiferromagnetic spintronics. Nat. Phys., 14, 200(2018).

    [271] S. K. Kim et al. Ferrimagnetic spintronics. Nat. Mater., 21, 24(2022).

    [272] J. Železný et al. Spin transport and spin torque in antiferromagnetic devices. Nat. Phys., 14, 220(2018).

    [273] P. Wadley et al. Electrical switching of an antiferromagnet. Science, 351, 587(2016).

    [274] B. Dieny et al. Opportunities and challenges for spintronics in the microelectronics industry. Nat. Electron., 3, 446(2020).

    [275] H. Watanabe et al. Observation of long-lived coherent spin precession in orthoferrite ErFeO3 induced by terahertz magnetic fields. Appl. Phys. Lett., 111, 092401(2017).

    [276] T. Kampfrath et al. Coherent terahertz control of antiferromagnetic spin waves. Nat. Photonics, 5, 31(2011).

    [277] T. Kohmoto, T. Moriyasu. Ultrafast magnon dynamics in antiferromagnetic nickel oxide observed by optical pump-probe and terahertz time-domain spectroscopies. 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 1(2018).

    [278] E. A. Mashkovich et al. Terahertz light–driven coupling of antiferromagnetic spins to lattice. Science, 374, 1608(2021).

    [279] D. J. Lockwood, M. G. Cottam. Light scattering from magnons in MnF2. Phys. Rev. B, 35, 1973(1987).

    [280] A. B. Ustinov et al. Q factor of dual-tunable microwave resonators based on yttrium iron garnet and barium strontium titanate layered structures. J. Appl. Phys., 103, 063908(2008).

    [281] R. C. LeCraw, E. G. Spencer, C. S. Porter. Ferromagnetic resonance line width in yttrium iron garnet single crystals. Phys. Rev., 110, 1311(1958).

    [282] S. Dai, S. A. Bhave, R. Wang. Octave-tunable magnetostatic wave YIG resonators on a chip. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 67, 2454(2020).

    [283] M. P. Kostylev et al. Spin-wave logical gates. Appl. Phys. Lett., 87, 153501(2005).

    [284] K. Yamaguchi, M. Nakajima, T. Suemoto. Coherent control of spin precession motion with impulsive magnetic fields of half-cycle terahertz radiation. Phys. Rev. Lett., 105, 237201(2010).

    [285] Z. Jin et al. Single-pulse terahertz coherent control of spin resonance in the canted antiferromagnet YFeO3, mediated by dielectric anisotropy. Phys. Rev. B, 87, 094422(2013).

    [286] M. F. DeCamp et al. Dynamics and coherent control of high-amplitude optical phonons in bismuth. Phys. Rev. B, 64, 092301(2001).

    [287] É. D. Murray et al. Effect of lattice anharmonicity on high-amplitude phonon dynamics in photoexcited bismuth. Phys. Rev. B, 72, 060301(2005).

    [288] Y.-H. Cheng et al. Coherent control of optical phonons in bismuth. Phys. Rev. B, 96, 134302(2017).

    [289] T. Arikawa et al. Quantum control of a Landau-quantized two-dimensional electron gas in a GaAs quantum well using coherent terahertz pulses. Phys. Rev. B, 84, 241307(2011).

    [290] A. Haldar, A. O. Adeyeye. Functional magnetic waveguides for magnonics. Appl. Phys. Lett., 119, 060501(2021).

    [291] X. Zhang et al. Strongly coupled magnons and cavity microwave photons. Phys. Rev. Lett., 113, 156401(2014).

    [292] Y. Tabuchi et al. Hybridizing ferromagnetic magnons and microwave photons in the quantum limit. Phys. Rev. Lett., 113, 083603(2014).

    [293] Y.-P. Wang et al. Bistability of cavity magnon polaritons. Phys. Rev. Lett., 120, 057202(2018).

    [294] J. B. Curtis et al. Cavity magnon-polaritons in cuprate parent compounds. Phys. Rev. Res., 4, 013101(2022).

    [295] P. Sivarajah et al. THz-frequency magnon-phonon-polaritons in the collective strong-coupling regime. J. Appl. Phys., 125, 213103(2019).

    [296] M. Białek, A. Magrez, J.-Ph. Ansermet. Spin-wave coupling to electromagnetic cavity fields in dysposium ferrite. Phys. Rev. B, 101, 024405(2020).

    [297] K. Grishunin et al. Terahertz magnon-polaritons in TmFeO3. ACS Photonics, 5, 1375(2018).

    [298] A. Baydin et al. Magnetically tuned continuous transition from weak to strong coupling in terahertz magnon polaritons(2022).

    [299] J. R. Hortensius et al. Coherent spin-wave transport in an antiferromagnet. Nat. Phys., 17, 1001(2021).

    [300] M. T. Johnson et al. Magnetic anisotropy in metallic multilayers. Rep. Prog. Phys., 59, 1409(1996).

    [301] S. Andrieu et al. Co/Ni multilayers for spintronics: high spin polarization and tunable magnetic anisotropy. Phys. Rev. Mater., 2, 064410(2018).

    [302] J. Liu, T. Hesjedal. Magnetic topological insulator heterostructures: a review. Adv. Mater., 2102427(2021).

    [303] M. Gibertini et al. Magnetic 2D materials and heterostructures. Nat. Nanotechnol., 14, 408(2019).

    [304] W. H. Meiklejohn, C. P. Bean. New magnetic anisotropy. Phys. Rev., 105, 904(1957).

    [305] J. Tang et al. Ultrafast photoinduced multimode antiferromagnetic spin dynamics in exchange-coupled Fe/RFeO3 (R = Er or Dy) heterostructures. Adv. Mater., 30, 1706439(2018).

    [306] L. Joly et al. Spin-reorientation in the heterostructure Co/SmFeO3. J. Phys., 21, 446004(2009).

    [307] L. Le Guyader et al. Dynamics of laser-induced spin reorientation in Co/SmFeO3 heterostructure. Phys. Rev. B, 87, 054437(2013).

    [308] W. Nolting. Theoretical Physics 9: Fundamentals of Many-body Physics(2018).

    [309] A. V. Chumak, A. A. Serga, B. Hillebrands. Magnon transistor for all-magnon data processing. Nat. Commun., 5, 4700(2014).

    [310] B. A. Kalinikos, N. G. Kovshikov, A. N. Slavin. Experimental observation of magnetostatic wave envelope solitons in yttrium iron garnet films. Phys. Rev. B, 42, 8658(1990).

    [311] A. A. Serga et al. Parametric generation of forward and phase-conjugated spin-wave bullets in magnetic films. Phys. Rev. Lett., 94, 167202(2005).

    [312] S. Schlauderer et al. Temporal and spectral fingerprints of ultrafast all-coherent spin switching. Nature, 569, 383(2019).

    [313] J. Lu et al. Coherent two-dimensional terahertz magnetic resonance spectroscopy of collective spin waves. Phys. Rev. Lett., 118, 207204(2017).

    [314] P. Hamm, M. Zanni. Concepts and Methods of 2D Infrared Spectroscopy(2011).

    [315] W. Kuehn et al. Strong correlation of electronic and lattice excitations in GaAs/AlGaAs semiconductor quantum wells revealed by two-dimensional terahertz spectroscopy. Phys. Rev. Lett., 107, 067401(2011).

    [316] C. Somma et al. Two-phonon quantum coherences in indium antimonide studied by nonlinear two-dimensional terahertz spectroscopy. Phys. Rev. Lett., 116, 177401(2016).

    [317] C. L. Johnson, B. E. Knighton, J. A. Johnson. Distinguishing nonlinear terahertz excitation pathways with two-dimensional spectroscopy. Phys. Rev. Lett., 122, 073901(2019).

    [318] F. Mahmood et al. Observation of a marginal Fermi glass. Nat. Phys., 17, 627(2021).

    [319] J. Mornhinweg et al. Tailored subcycle nonlinearities of ultrastrong light-matter coupling. Phys. Rev. Lett., 126, 177404(2021).

    [320] S. Pal et al. Origin of terahertz soft-mode nonlinearities in ferroelectric perovskites. Phys. Rev. X, 11, 021023(2021).

    [321] M. Mootz et al. Visualization and quantum control of light-accelerated condensates by terahertz multi-dimensional coherent spectroscopy. Commun. Phys., 5, 47(2022).

    [322] Z. Zhang et al. Nonlinear coupled magnonics: terahertz field-driven magnon upconversion(2022).

    [323] Y. Wan, N. P. Armitage. Resolving continua of fractional excitations by spinon echo in THz 2D coherent spectroscopy. Phys. Rev. Lett., 122, 257401(2019).

    [324] W. Choi, K. H. Lee, Y. B. Kim. Theory of two-dimensional nonlinear spectroscopy for the Kitaev spin liquid. Phys. Rev. Lett., 124, 117205(2020).

    [325] S. Ghosh et al. Microcavity exciton polaritons at room temperature. Photon. Insights, 1, R04(2022).

    [326] A. Bayer et al. Terahertz light–matter interaction beyond unity coupling strength. Nano Lett., 17, 6340(2017).

    [327] W. Gao et al. Continuous transition between weak and ultrastrong coupling through exceptional points in carbon nanotube microcavity exciton–polaritons. Nat. Photonics, 12, 362(2018).

    [328] X. Li et al. Vacuum Bloch–Siegert shift in Landau polaritons with ultra-high cooperativity. Nat. Photonics, 12, 324(2018).

    [329] G. Scalari et al. Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial. Science, 335, 1323(2012).

    [330] F. Yoshihara et al. Superconducting qubit–oscillator circuit beyond the ultrastrong-coupling regime. Nat. Phys, 13, 44(2017).

    [331] Y. Todorov et al. Ultrastrong light-matter coupling regime with polariton dots. Phys. Rev. Lett., 105, 196402(2010).

    [332] V. M. Muravev et al. Observation of hybrid plasmon-photon modes in microwave transmission of coplanar microresonators. Phys. Rev. B, 83, 075309(2011).

    [333] C. Leroux, L. C. G. Govia, A. A. Clerk. Enhancing cavity quantum electrodynamics via antisqueezing: synthetic ultrastrong coupling. Phys. Rev. Lett., 120, 093602(2018).

    [334] W. Qin et al. Exponentially enhanced light-matter interaction, cooperativities, and steady-state entanglement using parametric amplification. Phys. Rev. Lett., 120, 093601(2018).

    [335] G. Romero et al. Ultrafast quantum gates in circuit QED. Phys. Rev. Lett., 108, 120501(2012).

    [336] P. Nataf, C. Ciuti. Protected quantum computation with multiple resonators in ultrastrong coupling circuit QED. Phys. Rev. Lett., 107, 190402(2011).

    [337] P. Nataf, C. Ciuti. No-go theorem for superradiant quantum phase transitions in cavity QED and counter-example in circuit QED. Nat. Commun., 1, 72(2010).

    [338] K. Hayashida et al. Perfect intrinsic squeezing at the superradiant phase transition critical point(2020).

    [339] Q. Zhang et al. Collective non-perturbative coupling of 2D electrons with high-quality-factor terahertz cavity photons. Nat. Phys., 12, 1005(2016).

    [340] R. H. Dicke. Coherence in spontaneous radiation processes. Phys. Rev., 93, 99(1954).

    [341] K. Hepp, E. H. Lieb. On the superradiant phase transition for molecules in a quantized radiation field: the Dicke maser model. Ann. Phys., 76, 360(1973).

    [342] Y. K. Wang, F. T. Hioe. Phase transition in the Dicke model of superradiance. Phys. Rev. A, 7, 831(1973).

    [343] R. G. Woolley. Gauge invariance and the thermodynamics of the electromagnetic field. J. Phys. A, 9, L15(1976).

    [344] I. Bialynicki-Birula, K. Rza̧żewski. No-go theorem concerning the superradiant phase transition in atomic systems. Phys. Rev. A, 19, 301(1979).

    [345] G. M. Andolina et al. Theory of photon condensation in a spatially varying electromagnetic field. Phys. Rev. B, 102, 125137(2020).

    [346] M. Bamba, T. Ogawa. Stability of polarizable materials against superradiant phase transition. Phys. Rev. A, 90, 063825(2014).

    [347] L. Chirolli et al. Drude weight, cyclotron resonance, and the Dicke model of graphene cavity QED. Phys. Rev. Lett., 109, 267404(2012).

    [348] K. Baumann et al. Dicke quantum phase transition with a superfluid gas in an optical cavity. Nature, 464, 1301(2010).

    [349] Z. Zhiqiang et al. Nonequilibrium phase transition in a spin-1 Dicke model. Optica, 4, 424(2017).

    [350] J. M. Knight, Y. Aharonov, G. T. C. Hsieh. Are super-radiant phase transitions possible?. Phys. Rev. A, 17, 1454(1978).

    [351] M. Bamba, N. Imoto. Circuit configurations which may or may not show superradiant phase transitions. Phys. Rev. A, 96, 053857(2017).

    [352] P. Nataf et al. Rashba cavity QED: a route towards the superradiant quantum phase transition. Phys. Rev. Lett., 123, 207402(2019).

    [353] C. Riek et al. Direct sampling of electric-field vacuum fluctuations. Science, 350, 420(2015).

    [354] C. Riek et al. Subcycle quantum electrodynamics. Nature, 541, 376(2017).

    [355] F. F. Settembrini et al. Detection of quantum-vacuum field correlations outside the light cone. Nat. Commun., 13, 3383(2022).

    [356] M. Bamba et al. Magnonic superradiant phase transition. Commun. Phys., 5, 3(2022).

    [357] X. X. Zhang et al. Magnetic behavior and complete high-field magnetic phase diagram of the orthoferrite ErFeO3. Phys. Rev. B, 100, 054418(2019).

    [358] N. Marquez Peraca et al. Spin-magnon Dicke phase transition in ErFeO3(2022).

    [359] T. Makihara et al. Ultrastrong magnon–magnon coupling dominated by antiresonant interactions. Nat. Commun., 12, 3115(2021).

    [360] G. T. Noe et al. A table-top, repetitive pulsed magnet for nonlinear and ultrafast spectroscopy in high magnetic fields up to 30 T. Rev. Sci. Instrum., 84, 123906(2013).

    [361] M. O. Scully, M. S. Zubairy. Quantum Optics(1997).

    [362] R. E. Slusher et al. Observation of squeezed states generated by four-wave mixing in an optical cavity. Phys. Rev. Lett., 55, 2409(1985).

    [363] L.-A. Wu et al. Generation of squeezed states by parametric down conversion. Phys. Rev. Lett., 57, 2520(1986).

    [364] T. Kurihara et al. Spin canting in nonlinear terahertz magnon dynamics revealed by magnetorefractive probing in orthoferrite(2022).

    Xinwei Li, Dasom Kim, Yincheng Liu, Junichiro Kono. Terahertz spin dynamics in rare-earth orthoferrites[J]. Photonics Insights, 2022, 1(2): R05
    Download Citation