• Photonics Insights
  • Vol. 1, Issue 2, R05 (2022)
Xinwei Li1、2, Dasom Kim2、3, Yincheng Liu1, and Junichiro Kono2、4、5、*
Author Affiliations
  • 1Department of Physics, California Institute of Technology, Pasadena, USA
  • 2Department of Electrical and Computer Engineering, Rice University, Houston, USA
  • 3Applied Physics Graduate Program, Smalley-Curl Institute, Rice University, Houston, USA
  • 4Department of Physics and Astronomy, Rice University, Houston, USA
  • 5Department of Materials Science and NanoEngineering, Rice University, Houston, USA
  • show less
    DOI: 10.3788/PI.2022.R05 Cite this Article Set citation alerts
    Xinwei Li, Dasom Kim, Yincheng Liu, Junichiro Kono. Terahertz spin dynamics in rare-earth orthoferrites[J]. Photonics Insights, 2022, 1(2): R05 Copy Citation Text show less

    Abstract

    Recent interest in developing fast spintronic devices and laser-controllable magnetic solids has sparked tremendous experimental and theoretical efforts to understand and manipulate ultrafast dynamics in materials. Studies of spin dynamics in the terahertz (THz) frequency range are particularly important for elucidating microscopic pathways toward novel device functionalities. Here, we review THz phenomena related to spin dynamics in rare-earth orthoferrites, a class of materials promising for antiferromagnetic spintronics. We expand this topic into a description of four key elements. (1) We start by describing THz spectroscopy of spin excitations for probing magnetic phase transitions in thermal equilibrium. While acoustic magnons are useful indicators of spin reorientation transitions, electromagnons that arise from dynamic magnetoelectric couplings serve as a signature of inversion-symmetry-breaking phases at low temperatures. (2) We then review the strong laser driving scenario, where the system is excited far from equilibrium and thereby subject to modifications to the free-energy landscape. Microscopic pathways for ultrafast laser manipulation of magnetic order are discussed. (3) Furthermore, we review a variety of protocols to manipulate coherent THz magnons in time and space, which are useful capabilities for antiferromagnetic spintronic applications. (4) Finally, new insights into the connection between dynamic magnetic coupling in condensed matter and the Dicke superradiant phase transition in quantum optics are provided. By presenting a review on an array of THz spin phenomena occurring in a single class of materials, we hope to trigger interdisciplinary efforts that actively seek connections between subfields of spintronics, which will facilitate the invention of new protocols of active spin control and quantum phase engineering.

    Story Video to the Review Article

    F=S1+S2+S3+S4,G=S1S2+S3S4,A=S1S2S3+S4,C=S1+S2S3S4,

    View in Article

    f=R1+R2+R3+R4,g=R1R2+R3R4,a=R1R2R3+R4,c=R1+R2R3R4

    View in Article

    SA=S1+S3,SB=S2+S4.

    View in Article

    H=JFen.nS^iA·S^iBDyFen.n(S^i,zAS^i,xBS^i,zBS^i,xA)s=A,Bi[Ax(S^i,xs)2+Az(S^i,zs)2+AxzS^i,xsS^i,zs],

    View in Article

    ℏ︀ωFM={24JFeS2[2(AxAz)]}1/2,ℏ︀ωAFM={24JFeS[6DFeStanβ+2AxS]}1/2,

    View in Article

    HMO[ɛij0Ei(ω)Ej*(ω)+αijkEi(ω)Ej*(ω)Fk(0)+αijkEi(ω)Ej*(ω)Gk(0)+βijklEi(ω)Ej*(ω)Fk(0)Fl(0)+βijklEi(ω)Ej*(ω)Gk(0)Gl(0)+βijklEi(ω)Ej*(ω)Fk(0)Gl(0)],

    View in Article

    ɛij=2HEi(ω)Ej*(ω)=2HMOEi(ω)Ej*(ω),

    View in Article

    HPM(0)=HMOF(0),hPM(0)=HMOG(0),

    View in Article

    HPM(0)=α[E(ω)×E*(ω)],

    View in Article

    Pi(2)(Ω)χijk(2)(Ω=ω2ω1;ω1,ω2)Ej(ω1)Ek*(ω2)

    View in Article

    vTHzph=voptgr.

    View in Article

    vTHzph=voptgrcosγ.

    View in Article

    θ=arctan(AFAAF),

    View in Article

    Hmj=Hlinear,mj+Hquadratic,mj=μBkgm,kσ^kBtot,mj,k+(μB)2δm,±13/2kΔDk(Btot,mj,k)2I^,

    View in Article

    d2ϕdt2+2Γdϕdt+ω02dw(ϕ)dtγ2HDsinθH(t)cosϕ=0.

    View in Article

    Vanh=gijkQiQjQk,

    View in Article

    [Γ1Γ2]Γ3Ag,

    View in Article

    Q˙IR+γIRQ˙IR+(ωIR2+2gQR)QIR=zi*E(t),Q˙R+γRQ˙R+ωR2QR=g(QIR)2,

    View in Article

    MP×(tP).

    View in Article

    P=(P1(t)P2(t))=(A1sin(ω1t)A2sin(ω2t)),

    View in Article

    M(t)[ω+2sin(ωt)ω2sin(ω+t)]A1A2z^,

    View in Article

    |ψn(t)=eiɛnt/ℏ︀|φn(t),

    View in Article

    |φn(t)=meimωt|φn(m),

    View in Article

    (ɛn+mℏ︀ω)|φn(m)=mH(mm)|φn(m),

    View in Article

    Hϕn=ɛnϕn,

    View in Article

    H=(H(1)H(2)H(1)H(0)mℏ︀ωH(1)H(2)H(2)H(1)H(0)(m+1)ℏ︀ωH(1)H(2)H(1)),ϕn=(|φn(m)|φn(m+1)).

    View in Article

    H=t0ijσciσcjσ+Ujnjnj,

    View in Article

    HI=Ioptαi,j(Si·Sj)+2Ioptβ·i,j(Si×Sj),

    View in Article

    Ex(0)=ETHzinsinθ,Ey(0)=ETHzincosθ,

    View in Article

    Ex(d)=ETHzinsinθeαxd/2eiωnxd/c,Ey(d)=ETHzincosθeαyd/2eiωnyd/c,

    View in Article

    ETHzout=Ex(d)sinθ+Ey(d)cosθ=ETHzineαyd/2[cos2θeiω(nxny)d/ce(αxαy)d+sin2θ].

    View in Article

    ωk=ω02+(v0k)2,

    View in Article

    km=2k0n(λ0)cosγ,

    View in Article

    vg=(ωk/k)|k=km.

    View in Article

    BNL(t,τ)=BAB(t,τ)BA(t,τ)BB(t,τ),

    View in Article

    HatHat+Hint+HA2.

    View in Article

    Hint=j=1Nempj·A0(a+a),HA2=j=1Ne22m|A0|2(a+a)2,

    View in Article

    Hint=iℏ︀Ω0(a+a)b+h.c.,HA2=ℏ︀D(a+a)2,

    View in Article

    b=1Nj=1N(|eg|)j,

    View in Article

    Ω0=ωegℏ︀deg·A0N,

    View in Article

    D=(Ω0)2/ωeg.

    View in Article

    H=Hcav+Hat+Hint+HA2.

    View in Article

    H=ℏ︀i=±ωiPiPi+Const.,

    View in Article

    Pi=uipha+uielb+vipha+vielb,

    View in Article

    M=(ωcav+i2DiΩ02DiΩ0iΩ0ωegiΩ002DiΩ0(ωcav+i2D)iΩ0iΩ00iΩ0ωeg).

    View in Article

    H=HFe+HEr+HFeEr.

    View in Article

    HFe=s=A,Bi=1N0μBS^is·gFe·BDC+JFen.nS^iA·S^iBDyFen.n(S^i,zAS^i,xBS^i,zBS^i,xA)s=A,Bi=1N0[Ax(S^i,xs)2+Az(S^i,zs)2+AxzS^i,xsS^i,zs],

    View in Article

    HEr=s=A,Bi=1N012μBR^is·gEr·BDC+JErn.nR^iA·R^iB

    View in Article

    HErFe=s,s=A,Bi=1N0[JR^is·S^is+Ds,s·(R^is×S^is)],

    View in Article

    DA,A=(Dx,Dy,0)T,DA,B=(Dx,Dy,0)T,DB,A=(Dx,Dy,0)T,DB,B=(Dx,Dy,0)T.

    View in Article

    H=K=0,πℏ︀ωKa^Ka^K+ExΣ^x++ξ=x,y,zgξErμBBξDCΣ^ξ++4zErJErN0Σ^A·Σ^B+2ℏ︀gxN0(aπ+aπ)Σ^x++i2ℏ︀gyN0(a0a0)Σ^y++2ℏ︀gyN0(aπ+aπ)Σ^y+i2ℏ︀gzN0(aπaπ)Σ^z+2ℏ︀gzN0(a0+a0)Σ^z+.

    View in Article

    [δF˙xδF˙yδG˙xδG˙y]=2γsinβz[02AyDyx02Ax00DxyDxy002By0Dyx2Bx0][δFxδFyδGxδGy],

    View in Article

    H=ℏ︀ω0a(a^a^+12)+ℏ︀ω0b(b^b^+12)+iℏ︀g1(a^b^a^b^)+iℏ︀g2(a^b^a^b^),

    View in Article

    c^φ,ψ=a^cosφ+eiψb^sinφ,

    View in Article

    X^φ,ψ,ϕ=(c^φ,ψeiϕ+c^φ,ψeiϕ)/2,

    View in Article

    Xinwei Li, Dasom Kim, Yincheng Liu, Junichiro Kono. Terahertz spin dynamics in rare-earth orthoferrites[J]. Photonics Insights, 2022, 1(2): R05
    Download Citation