• Advanced Photonics
  • Vol. 2, Issue 3, 036002 (2020)
Zhixiong Shen1,2, Shenghang Zhou1, Xinan Li1, Shijun Ge1,2..., Peng Chen1,2, Wei Hu1,2,* and Yanqing Lu1,*|Show fewer author(s)
Author Affiliations
  • 1Nanjing University, College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, Collaborative Innovation Center of Advanced Microstructures, Nanjing, China
  • 2Jiangsu Industrial Technology Research Institute, Institute for Smart Liquid Crystals, Changshu, China
  • show less
    DOI: 10.1117/1.AP.2.3.036002 Cite this Article Set citation alerts
    Zhixiong Shen, Shenghang Zhou, Xinan Li, Shijun Ge, Peng Chen, Wei Hu, Yanqing Lu, "Liquid crystal integrated metalens with tunable chromatic aberration," Adv. Photon. 2, 036002 (2020) Copy Citation Text show less
    References

    [1] A. V. Kildishev, A. Boltasseva, V. M. Shalaev. Planar photonics with metasurfaces. Science, 339, 1232009(2013).

    [2] N. Yu, F. Capasso. Flat optics with designer metasurfaces. Nat. Mater., 13, 139(2014).

    [3] P. Genevet et al. Recent advances in planar optics: from plasmonic to dielectric metasurfaces. Optica, 4, 139-152(2017).

    [4] M. Khorasaninejad et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science, 352, 1190-1194(2016).

    [5] P. Lalanne, P. Chavel. Metalenses at visible wavelengths: past, present, perspectives. Laser Photonics Rev., 11, 1600295(2017).

    [6] M. Khorasaninejad, F. Capasso. Metalenses: versatile multifunctional photonic components. Science, 358, eaam8100(2017).

    [7] M. L. Tseng et al. Metalenses: advances and applications. Adv. Opt. Mater., 6, 1800554(2018).

    [8] M. Khorasaninejad et al. Polarization-insensitive metalenses at visible wavelengths. Nano Lett., 16, 7229-7234(2016).

    [9] Q. Yang et al. Broadband and robust metalens with nonlinear phase profiles for efficient terahertz wave control. Adv. Opt. Mater., 5, 1601084(2017).

    [10] S. Shrestha et al. Broadband achromatic dielectric metalenses. Light Sci. Appl., 7, 8(2018).

    [11] W. T. Chen et al. A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures. Nat. Commun., 10, 355(2019).

    [12] V. C. Su et al. Advances in optical metasurfaces: fabrication and applications. Opt. Express, 26, 13148-13182(2018).

    [13] E. Arbabi et al. MEMS-tunable dielectric metasurface lens. Nat. Commun., 9, 812(2018).

    [14] K. Chen et al. A reconfigurable active Huygens’ metalens. Adv. Mater., 29, 1606422(2017).

    [15] A. Afridi et al. Electrically driven varifocal silicon metalens. ACS Photonics, 5, 4497-4503(2018).

    [16] X. Yin et al. Beam switching and bifocal zoom lensing using active plasmonic metasurfaces. Light Sci. Appl., 6, e17016(2017).

    [17] Q. Wang et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat. Photonics, 10, 60-65(2016).

    [18] A. Karvounis et al. All-dielectric phase-change reconfigurable metasurface. Appl. Phys. Lett., 109, 051103(2016).

    [19] W. Liu et al. Graphene-enabled electrically controlled terahertz meta-lens. Photonics Res., 6, 703-708(2018).

    [20] C. Y. Fan et al. Electrically modulated varifocal metalens combined with twisted nematic liquid crystals. Opt. Express, 28, 10609-10617(2020).

    [21] J. Beeckman et al. Multi-electrode tunable liquid crystal lenses with one lithography step. Opt. Lett., 43, 271-274(2018).

    [22] B. Ferguson, X. C. Zhang. Materials for terahertz science and technology. Nat. Mater., 1, 26-33(2002).

    [23] X. Y. Jiang et al. An ultrathin terahertz lens with axial long focal depth based on metasurfaces. Opt. Express, 21, 30030-30038(2013).

    [24] J. He et al. A broadband terahertz ultrathin multi-focus lens. Sci. Rep., 6, 28800(2016).

    [25] D. Jia et al. Transmissive terahertz metalens with full phase control based on a dielectric metasurface. Opt. Lett., 42, 4494-4497(2017).

    [26] W. T. Chen et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol., 13, 220-226(2018).

    [27] Z. B. Fan et al. A broadband achromatic metalens array for integral imaging in the visible. Light Sci. Appl., 8, 67(2019).

    [28] S. Wang et al. A broadband achromatic metalens in the visible. Nat. Nanotechnol., 13, 227-232(2018).

    [29] S. M. Wang et al. Broadband achromatic optical metasurface devices. Nat. Commun., 8, 187(2017).

    [30] R. J. Lin et al. Achromatic metalens array for full-colour light-field imaging. Nat. Nanotechnol., 14, 227-231(2019).

    [31] Q. Cheng et al. Broadband achromatic metalens in terahertz regime. Sci. Bull., 64, 1525-1531(2019).

    [32] M. Naftaly, R. E. Miles. Terahertz time-domain spectroscopy for material characterization. Proc. IEEE, 95, 1658-1665(2007).

    [33] B. Ferguson et al. T-ray computed tomography. Opt. Lett., 27, 1312-1314(2002).

    [34] X. Ni et al. Ultra-thin, planar, Babinet-inverted plasmonic metalenses. Light Sci. Appl., 2, e72(2013).

    [35] C. Chen et al. Spectral tomographic imaging with aplanatic metalens. Light Sci. Appl., 8, 99(2019).

    [36] A. Arbabi et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol., 10, 937-943(2015).

    [37] S. Jahani, Z. Jacob. All-dielectric metamaterials. Nat. Nanotechnol., 11, 23-36(2016).

    [38] Z. X. Shen et al. Liquid crystal tunable terahertz lens with spin-selected focusing property. Opt. Express, 27, 8800-8807(2019).

    [39] L. Wang et al. Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes. Light Sci. Appl., 4, e253(2015).

    [40] A. Arbabi et al. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat. Commun., 6, 7069(2015).

    [41] M. V. Berry. The adiabatic phase and Pancharatnam’s phase for polarized light. J. Mod. Opt., 34, 1401-1407(1987).

    [42] P. Chen et al. Chirality invertible superstructure mediated active planar optics. Nat. Commun., 10, 2518(2019).

    [43] G. Zheng et al. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol., 10, 308-312(2015).

    [44] S. Lepeshov et al. Enhancement of terahertz photoconductive antenna operation by optical nanoantennas. Laser Photonics Rev., 11, 1600199(2017).

    [45] Z. X. Shen et al. Liquid-crystal-integrated metadevice: towards active multifunctional terahertz wave manipulations. Opt. Lett., 43, 4695-4698(2018).

    [46] Z. X. Shen et al. Liquid crystal enabled dynamic cloaking of terahertz Fano resonators. Appl. Phys. Lett., 114, 041106(2019).

    [47] P. Chen et al. Digitalizing self-assembled chiral superstructures for optical vortex processing. Adv. Mater., 30, 1705865(2018).

    [48] Z. X. Shen et al. Planar terahertz photonics mediated by liquid crystal polymers. Adv. Opt. Mater., 8, 1902124(2020).

    [49] L. Wang et al. Large birefringence liquid crystal material in terahertz range. Opt. Mater. Express, 2, 1314-1319(2012).

    [50] N. Yu et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333-337(2011).

    [51] S. M. Kamali et al. Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces. Nat. Commun., 7, 11618(2016).

    CLP Journals

    [1] Hui Yang, Zhenwei Xie, Guanhai Li, Kai Ou, Feilong Yu, Hairong He, Hong Wang, Xiaocong Yuan, "All-dielectric metasurface for fully resolving arbitrary beams on a higher-order Poincaré sphere," Photonics Res. 9, 331 (2021)

    [2] Xiangyu Zeng, Yuqin Zhang, Manna Gu, Zijun Zhan, Ruirui Zhang, Yu Zhang, Rui Sun, Changwei He, Chunxiang Liu, Chuanfu Cheng, "Arbitrary manipulations of focused higher-order Poincaré beams by a Fresnel zone metasurface with alternate binary geometric and propagation phases," Photonics Res. 10, 1117 (2022)

    [3] Yiwu Yuan, Jierong Cheng, Fei Fan, Xianghui Wang, Shengjiang Chang, "Control of angular dispersion in dielectric gratings for multifunctional wavefront shaping and dynamic polarization conversion," Photonics Res. 9, 2190 (2021)

    [4] Lingling Ma, Chaoyi Li, Luyao Sun, Zhenpeng Song, Yanqing Lu, Bingxiang Li, "Submicrosecond electro-optical switching of one-dimensional soft photonic crystals," Photonics Res. 10, 786 (2022)

    [5] Shitong Xu, Fei Fan, Hongzhong Cao, Yinghua Wang, Shengjiang Chang, "Liquid crystal integrated metamaterial for multi-band terahertz linear polarization conversion," Chin. Opt. Lett. 19, 093701 (2021)

    [6] Dewen Cheng, Jiaxi Duan, Hailong Chen, He Wang, Danyang Li, Qiwei Wang, Qichao Hou, Tong Yang, Weihong Hou, Donghua Wang, Xiaoyu Chi, Bin Jiang, Yongtian Wang, "Freeform OST-HMD system with large exit pupil diameter and vision correction capability," Photonics Res. 10, 21 (2022)

    [7] Shibiao Wei, Guiyuan Cao, Han Lin, Haoran Mu, Wenbo Liu, Xiaocong Yuan, Michael Somekh, Baohua Jia, "High tolerance detour-phase graphene-oxide flat lens," Photonics Res. 9, 2454 (2021)

    [8] Jaekyung Kim, Junhwa Seong, Younghwan Yang, Seong-Won Moon, Trevon Badloe, Junsuk Rho, "Tunable metasurfaces towards versatile metalenses and metaholograms: a review," Adv. Photon. 4, 024001 (2022)

    [9] Yanchun Shen, Zhixiong Shen, Guozhong Zhao, Wei Hu, "Photopatterned liquid crystal mediated terahertz Bessel vortex beam generator [Invited]," Chin. Opt. Lett. 18, 080003 (2020)

    Zhixiong Shen, Shenghang Zhou, Xinan Li, Shijun Ge, Peng Chen, Wei Hu, Yanqing Lu, "Liquid crystal integrated metalens with tunable chromatic aberration," Adv. Photon. 2, 036002 (2020)
    Download Citation