• Advanced Photonics
  • Vol. 2, Issue 3, 036002 (2020)
Zhixiong Shen1、2, Shenghang Zhou1, Xinan Li1, Shijun Ge1、2, Peng Chen1、2, Wei Hu1、2、*, and Yanqing Lu1、*
Author Affiliations
  • 1Nanjing University, College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, Collaborative Innovation Center of Advanced Microstructures, Nanjing, China
  • 2Jiangsu Industrial Technology Research Institute, Institute for Smart Liquid Crystals, Changshu, China
  • show less
    DOI: 10.1117/1.AP.2.3.036002 Cite this Article Set citation alerts
    Zhixiong Shen, Shenghang Zhou, Xinan Li, Shijun Ge, Peng Chen, Wei Hu, Yanqing Lu. Liquid crystal integrated metalens with tunable chromatic aberration[J]. Advanced Photonics, 2020, 2(3): 036002 Copy Citation Text show less
    References

    [1] A. V. Kildishev, A. Boltasseva, V. M. Shalaev. Planar photonics with metasurfaces. Science, 339, 1232009(2013).

    [2] N. Yu, F. Capasso. Flat optics with designer metasurfaces. Nat. Mater., 13, 139(2014).

    [3] P. Genevet et al. Recent advances in planar optics: from plasmonic to dielectric metasurfaces. Optica, 4, 139-152(2017).

    [4] M. Khorasaninejad et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science, 352, 1190-1194(2016).

    [5] P. Lalanne, P. Chavel. Metalenses at visible wavelengths: past, present, perspectives. Laser Photonics Rev., 11, 1600295(2017).

    [6] M. Khorasaninejad, F. Capasso. Metalenses: versatile multifunctional photonic components. Science, 358, eaam8100(2017).

    [7] M. L. Tseng et al. Metalenses: advances and applications. Adv. Opt. Mater., 6, 1800554(2018).

    [8] M. Khorasaninejad et al. Polarization-insensitive metalenses at visible wavelengths. Nano Lett., 16, 7229-7234(2016).

    [9] Q. Yang et al. Broadband and robust metalens with nonlinear phase profiles for efficient terahertz wave control. Adv. Opt. Mater., 5, 1601084(2017).

    [10] S. Shrestha et al. Broadband achromatic dielectric metalenses. Light Sci. Appl., 7, 8(2018).

    [11] W. T. Chen et al. A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures. Nat. Commun., 10, 355(2019).

    [12] V. C. Su et al. Advances in optical metasurfaces: fabrication and applications. Opt. Express, 26, 13148-13182(2018).

    [13] E. Arbabi et al. MEMS-tunable dielectric metasurface lens. Nat. Commun., 9, 812(2018).

    [14] K. Chen et al. A reconfigurable active Huygens’ metalens. Adv. Mater., 29, 1606422(2017).

    [15] A. Afridi et al. Electrically driven varifocal silicon metalens. ACS Photonics, 5, 4497-4503(2018).

    [16] X. Yin et al. Beam switching and bifocal zoom lensing using active plasmonic metasurfaces. Light Sci. Appl., 6, e17016(2017).

    [17] Q. Wang et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat. Photonics, 10, 60-65(2016).

    [18] A. Karvounis et al. All-dielectric phase-change reconfigurable metasurface. Appl. Phys. Lett., 109, 051103(2016).

    [19] W. Liu et al. Graphene-enabled electrically controlled terahertz meta-lens. Photonics Res., 6, 703-708(2018).

    [20] C. Y. Fan et al. Electrically modulated varifocal metalens combined with twisted nematic liquid crystals. Opt. Express, 28, 10609-10617(2020).

    [21] J. Beeckman et al. Multi-electrode tunable liquid crystal lenses with one lithography step. Opt. Lett., 43, 271-274(2018).

    [22] B. Ferguson, X. C. Zhang. Materials for terahertz science and technology. Nat. Mater., 1, 26-33(2002).

    [23] X. Y. Jiang et al. An ultrathin terahertz lens with axial long focal depth based on metasurfaces. Opt. Express, 21, 30030-30038(2013).

    [24] J. He et al. A broadband terahertz ultrathin multi-focus lens. Sci. Rep., 6, 28800(2016).

    [25] D. Jia et al. Transmissive terahertz metalens with full phase control based on a dielectric metasurface. Opt. Lett., 42, 4494-4497(2017).

    [26] W. T. Chen et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol., 13, 220-226(2018).

    [27] Z. B. Fan et al. A broadband achromatic metalens array for integral imaging in the visible. Light Sci. Appl., 8, 67(2019).

    [28] S. Wang et al. A broadband achromatic metalens in the visible. Nat. Nanotechnol., 13, 227-232(2018).

    [29] S. M. Wang et al. Broadband achromatic optical metasurface devices. Nat. Commun., 8, 187(2017).

    [30] R. J. Lin et al. Achromatic metalens array for full-colour light-field imaging. Nat. Nanotechnol., 14, 227-231(2019).

    [31] Q. Cheng et al. Broadband achromatic metalens in terahertz regime. Sci. Bull., 64, 1525-1531(2019).

    [32] M. Naftaly, R. E. Miles. Terahertz time-domain spectroscopy for material characterization. Proc. IEEE, 95, 1658-1665(2007).

    [33] B. Ferguson et al. T-ray computed tomography. Opt. Lett., 27, 1312-1314(2002).

    [34] X. Ni et al. Ultra-thin, planar, Babinet-inverted plasmonic metalenses. Light Sci. Appl., 2, e72(2013).

    [35] C. Chen et al. Spectral tomographic imaging with aplanatic metalens. Light Sci. Appl., 8, 99(2019).

    [36] A. Arbabi et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol., 10, 937-943(2015).

    [37] S. Jahani, Z. Jacob. All-dielectric metamaterials. Nat. Nanotechnol., 11, 23-36(2016).

    [38] Z. X. Shen et al. Liquid crystal tunable terahertz lens with spin-selected focusing property. Opt. Express, 27, 8800-8807(2019).

    [39] L. Wang et al. Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes. Light Sci. Appl., 4, e253(2015).

    [40] A. Arbabi et al. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat. Commun., 6, 7069(2015).

    [41] M. V. Berry. The adiabatic phase and Pancharatnam’s phase for polarized light. J. Mod. Opt., 34, 1401-1407(1987).

    [42] P. Chen et al. Chirality invertible superstructure mediated active planar optics. Nat. Commun., 10, 2518(2019).

    [43] G. Zheng et al. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol., 10, 308-312(2015).

    [44] S. Lepeshov et al. Enhancement of terahertz photoconductive antenna operation by optical nanoantennas. Laser Photonics Rev., 11, 1600199(2017).

    [45] Z. X. Shen et al. Liquid-crystal-integrated metadevice: towards active multifunctional terahertz wave manipulations. Opt. Lett., 43, 4695-4698(2018).

    [46] Z. X. Shen et al. Liquid crystal enabled dynamic cloaking of terahertz Fano resonators. Appl. Phys. Lett., 114, 041106(2019).

    [47] P. Chen et al. Digitalizing self-assembled chiral superstructures for optical vortex processing. Adv. Mater., 30, 1705865(2018).

    [48] Z. X. Shen et al. Planar terahertz photonics mediated by liquid crystal polymers. Adv. Opt. Mater., 8, 1902124(2020).

    [49] L. Wang et al. Large birefringence liquid crystal material in terahertz range. Opt. Mater. Express, 2, 1314-1319(2012).

    [50] N. Yu et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333-337(2011).

    [51] S. M. Kamali et al. Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces. Nat. Commun., 7, 11618(2016).

    CLP Journals

    [1] Hui Yang, Zhenwei Xie, Guanhai Li, Kai Ou, Feilong Yu, Hairong He, Hong Wang, Xiaocong Yuan. All-dielectric metasurface for fully resolving arbitrary beams on a higher-order Poincaré sphere[J]. Photonics Research, 2021, 9(3): 331

    [2] Xiangyu Zeng, Yuqin Zhang, Manna Gu, Zijun Zhan, Ruirui Zhang, Yu Zhang, Rui Sun, Changwei He, Chunxiang Liu, Chuanfu Cheng. Arbitrary manipulations of focused higher-order Poincaré beams by a Fresnel zone metasurface with alternate binary geometric and propagation phases[J]. Photonics Research, 2022, 10(4): 1117

    [3] Yiwu Yuan, Jierong Cheng, Fei Fan, Xianghui Wang, Shengjiang Chang. Control of angular dispersion in dielectric gratings for multifunctional wavefront shaping and dynamic polarization conversion[J]. Photonics Research, 2021, 9(11): 2190

    [4] Lingling Ma, Chaoyi Li, Luyao Sun, Zhenpeng Song, Yanqing Lu, Bingxiang Li. Submicrosecond electro-optical switching of one-dimensional soft photonic crystals[J]. Photonics Research, 2022, 10(3): 786

    [5] Shitong Xu, Fei Fan, Hongzhong Cao, Yinghua Wang, Shengjiang Chang. Liquid crystal integrated metamaterial for multi-band terahertz linear polarization conversion[J]. Chinese Optics Letters, 2021, 19(9): 093701

    [6] Dewen Cheng, Jiaxi Duan, Hailong Chen, He Wang, Danyang Li, Qiwei Wang, Qichao Hou, Tong Yang, Weihong Hou, Donghua Wang, Xiaoyu Chi, Bin Jiang, Yongtian Wang. Freeform OST-HMD system with large exit pupil diameter and vision correction capability[J]. Photonics Research, 2022, 10(1): 21

    [7] Shibiao Wei, Guiyuan Cao, Han Lin, Haoran Mu, Wenbo Liu, Xiaocong Yuan, Michael Somekh, Baohua Jia. High tolerance detour-phase graphene-oxide flat lens[J]. Photonics Research, 2021, 9(12): 2454

    [8] Jaekyung Kim, Junhwa Seong, Younghwan Yang, Seong-Won Moon, Trevon Badloe, Junsuk Rho. Tunable metasurfaces towards versatile metalenses and metaholograms: a review[J]. Advanced Photonics, 2022, 4(2): 024001

    [9] Yanchun Shen, Zhixiong Shen, Guozhong Zhao, Wei Hu. Photopatterned liquid crystal mediated terahertz Bessel vortex beam generator [Invited][J]. Chinese Optics Letters, 2020, 18(8): 080003

    Zhixiong Shen, Shenghang Zhou, Xinan Li, Shijun Ge, Peng Chen, Wei Hu, Yanqing Lu. Liquid crystal integrated metalens with tunable chromatic aberration[J]. Advanced Photonics, 2020, 2(3): 036002
    Download Citation