• Laser & Optoelectronics Progress
  • Vol. 55, Issue 12, 120005 (2018)
Yanping Liu*, Chong Wang**, and Haiyun Xia***
Author Affiliations
  • School of Earth and Space Science, University of Science and Technology of China, Hefei, Anhui 230026, China
  • show less
    DOI: 10.3788/LOP55.120005 Cite this Article Set citation alerts
    Yanping Liu, Chong Wang, Haiyun Xia. Application Progress of Time-Frequency Analysis for Lidar[J]. Laser & Optoelectronics Progress, 2018, 55(12): 120005 Copy Citation Text show less
    References

    [1] Lefsky M A, Cohen W B, Parker G G et al. Lidar remote sensing for ecosystem studies[J]. BioScience, 52, 19-30(2002). http://bioscience.oxfordjournals.org/content/52/1/19/F10.expansion.html

    [2] Wu S H, Zhai X C, Liu B Y et al. Characterization of aircraft dynamic wake vortices and atmospheric turbulence by coherent doppler lidar. [C]∥The 28th International Laser Radar Conference, June 25-30, 2017, Bucharest, Romania. Amsterdam: EDP Sciences, 176, 06001(2018).

    [3] Wang C, Xia H Y, Shangguan M J et al. 1.5 μm polarization coherent lidar incorporating time-division multiplexing[J]. Optics Express, 25, 20663-20674(2017). http://www.ncbi.nlm.nih.gov/pubmed/29041745

    [4] Ma X M, Tao Z M, Zhang L L et al. Ground layer aerosol detection technology during daytime based on side-scattering lidar[J]. Acta Optica Sinica, 38, 0401005(2018).

    [5] Ye G H, Deng S S, Xu W B et al. Application of airborne LiDAR technology in dune deformation monitoring[J]. Laser & Optoelectronics Progress, 55, 052802(2018).

    [6] Cohen L. Time-frequency distributions-a review[J]. Proceedings of the IEEE, 77, 941-981(1989). http://doi.ieeecomputersociety.org/resolve?ref_id=doi:10.1109/5.30749&rfr_id=trans/tp/2005/06/ttp2005060919.htm

    [7] Feng Z P, Liang M, Chu F L. Recent advances in time-frequency analysis methods for machinery fault diagnosis: a review with application examples[J]. Mechanical Systems and Signal Processing, 38, 165-205(2013). http://www.sciencedirect.com/science/article/pii/S088832701300071X

    [8] Boashash B[M]. Time-frequency signal analysis and processing: a comprehensive reference(2015).

    [9] Gabor D. Theory of communication. Part 1: The analysis of information[J]. Journal of the Institution of Electrical Engineers-Part III: Radio and Communication Engineering, 93, 429-441(1946).

    [10] Potter R K, Kopp G A, Green H C. Visible speech[M]. New York: Van Nostrand and Company(1947).

    [11] Grossmann A, Morlet J. Decomposition of hardy functions into square integrable wavelets of constant shape[J]. SIAM Journal on Mathematical Analysis, 15, 723-736(1984). http://xueshurefer.baidu.com/nopagerefer?id=7ded727ca26b43039b0b84251ba2b420

    [12] Stockwell R G, Mansinha L, Lowe R P. Localization of the complex spectrum: the S transform[J]. IEEE Transactions on Signal Processing, 44, 998-1001(1996). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=492555

    [13] Namias V. The fractional order Fourier transform and its application to quantum mechanics[J]. IMA Journal of Applied Mathematics, 25, 241-265(1980). http://imamat.oxfordjournals.org/content/25/3/241

    [14] Cohen L. Time-frequency analysis[M]. New Jersey: Prentice Hall PTR(1995).

    [15] Bertrand J, Bertrand P. Affinetime-frequency distributions. [C]∥1990 Special Conference on Time-Frequency Signal Analysis/International Symp on Signal Processing and its Applications, 1990, Gold Coast Australia. Melbourne: Longman Cheshire, 118-140(1992).

    [16] Auger F, Flandrin P. Improving the readability of time-frequency and time-scale representations by the reassignment method[J]. IEEE Transactions on Signal Processing, 43, 1068-1089(1995). http://gji.oxfordjournals.org/external-ref?access_num=10.1109/78.382394&link_type=DOI

    [17] Jeong J, Williams W J. Kernel design for reduced interference distributions[J]. IEEE Transactions on Signal Processing, 40, 402-412(1992). http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=124950

    [18] Wigner E. On the quantum correction for thermodynamic equilibrium[J]. Physical Review, 40, 749-759(1932). http://prola.aps.org/abstract/PR/v40/i5/p749_1

    [19] Ville J. Theorie et application de la notion de signal analytique[J]. Cables et Transmission, 2, 61-74(1948).

    [20] Bastiaans M J. A sampling theorem for the complex spectrogram, and Gabor's expansion of a signal in Gaussian elementary signals[J]. Optical Engineering, 20, 204594(1981). http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1981OptEn..20..597B&db_key=PHY&link_type=ABSTRACT

    [21] Claasen T. Mecklenbrauker W F G. The Wigner distribution—a tool for time-frequency signal analysis[J]. Philips Journal of Research, 35, 217-250(1980).

    [22] Flandrin P, Martin W. A general class of estimators for the Wigner-Ville spectrum of non-stationary processes[M]. ∥Bensoussan A, Lions J L. Analysis and Optimization of Systems. Berlin, Heidelberg: Springer, 15-23(1984).

    [23] Born M, Jordan P. Zur quantenmechanik[J]. Zeitschriftfür Physik, 34, 858-888(1925).

    [24] Choi H I, Williams W J. Improved time-frequency representation of multicomponent signals using exponential kernels[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 37, 862-871(1989). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=28057

    [25] Zhao Y, Atlas L E, Marks R J. The use of cone-shaped kernels for generalized time-frequency representations of nonstationary signals[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 38, 1084-1091(1990). http://ieeexplore.ieee.org/iel1/29/2084/00057537.pdf

    [26] Page C H. Instantaneous power spectra[J]. Journal of Applied Physics, 23, 103-106(1952).

    [27] Rihaczek A. Signal energy distribution in time and frequency[J]. IEEE Transactions on Information Theory, 14, 369-374(1968). http://dl.acm.org/citation.cfm?id=2267649

    [28] Margenau H, Hill R N. Correlation between measurements in quantum theory[J]. Progress of Theoretical Physics, 26, 722-738(1961). http://ptp.oxfordjournals.org/content/26/5/722

    [29] Huang N E, Shen Z, Long S R et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings: Mathematical, Physical and Engineering Sciences, 454, 903-995(1998). http://www.tandfonline.com/servlet/linkout?suffix=CIT0001&dbid=16&doi=10.1080%2F23080477.2017.1346497&key=10.1098%2Frspa.1998.0193

    [30] Huang N E. Hilbert-Huang transform and its applications[M]. 2nd ed. New Jersey: World Scientific(2014).

    [31] Qian S E, Chen D P. Signal representation using adaptive normalized Gaussian functions[J]. Signal Processing, 36, 1-11(1994). http://dl.acm.org/citation.cfm?id=195168

    [32] Mallat S G, Zhang Z F. Matching pursuits with time-frequency dictionaries[J]. IEEE Transactions on Signal Processing, 41, 3397-3415(1993). http://dl.acm.org/citation.cfm?id=2203996

    [33] Képesi M, Weruaga L. Adaptive chirp-based time-frequency analysis of speech signals[J]. Speech Communication, 48, 474-492(2006). http://www.sciencedirect.com/science/article/pii/S0167639305002013

    [34] Brousmiche S. Simulation of coherent Doppler LIDAR signals and their analysis with the Cohen's class: application to algorithms design for wake vortex detection and characterization Belgium: UCL-Université Catholique de[D]. Louvain(2010).

    [35] Renard W, Goular D, Valla M et al. Beyond 10 km range wind-speed measurement with a 1.5 μm all-fiber laser source. [C]∥2014 Conference on Lasers and Electro-Optics (CLEO)-Laser Science to Photonic Applications, June 8-13, 2014, San Jose, CA, USA. New York: IEEE, 14822367(2014).

    [36] Dolfi-Bouteyre A, Canat G, Lombard L et al. Long-range wind monitoring in real time with optimized coherent lidar[J]. Optical Engineering, 56, 031217(2017). http://proceedings.spiedigitallibrary.org/article.aspx?articleid=2592723&resultClick=1

    [37] Qiu J H, Shen S P, Xu G Y. Short-term wind speed forecasting by combination of masking signal-based empirical mode decomposition and extreme learning machine. [C]∥2016 11th International Conference on Computer Science & Education (ICCSE), August 23-25, 2016, Nagoya, Japan. New York: IEEE, 581-586(2016).

    [38] Chen C, Chu X Z. Two-dimensional Morlet wavelet transform and its application to wave recognition methodology of automatically extracting two-dimensional wave packets from lidar observations in Antarctica[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 162, 28-47(2017). http://www.sciencedirect.com/science/article/pii/S1364682616303418

    [39] Chen C, Chu X Z, Zhao J et al. Lidar observations of persistent gravity waves with periods of 3-10 h in the Antarctic middle and upper atmosphere at McMurdo (77.83°S, 166.67°E)[J]. Journal of Geophysical Research: Space Physics, 121, 1483-1502(2016). http://onlinelibrary.wiley.com/doi/10.1002/2015JA022127/pdf

    [40] Cézard N, Liméry A, Bertrand J et al. New lidar challenges for gas hazard management in industrial environments[J]. Proceedings of SPIE, 10429, 1042903(2017). http://adsabs.harvard.edu/abs/2017SPIE10429E..03C

    [41] Kaifler N, Kaifler B, Ehard B et al. Observational indications of downward-propagating gravity waves in middle atmosphere lidar data[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 162, 16-27(2017). http://www.sciencedirect.com/science/article/pii/S1364682617301475

    [42] Wang C, Xia H Y, Liu Y P et al. Spatial resolution enhancement of coherent Doppler wind lidar using joint time-frequency analysis[J]. Optics Communications, 424, 48-53(2018). http://www.sciencedirect.com/science/article/pii/S0030401818303183

    [43] Boyo H, Fujiwara M, Moshnyaga V G et al. Algorithm based on joint time-frequency analysis to eliminate noise from stratospheric laser data[J]. Proceedings of SPIE, 4891, 515-523(2003). http://spie.org/Publications/Proceedings/Paper/10.1117/12.467546

    [44] Wu S H, Liu Z S, Liu B Y. Enhancement of lidar backscatters signal-to-noise ratio using empirical mode decomposition method[J]. Optics Communications, 267, 137-144(2006). http://www.sciencedirect.com/science/article/pii/S003040180600589X

    [45] Li L, Si X C, Chai J F et al. Parameters estimation for LFM radar signal based on reassigned wavelet-Radon transform[J]. Systems Engineering and Electronics, 31, 74-77(2009).

    [46] Zhang Y K, Ma X C, Hua D X et al. An EMD-based denoising method for lidar signal. [C]∥2010 3rd International Congress on Image and Signal Processing, October 16-18, 2010, Yantai, China. New York: IEEE, 4016-4019(2010).

    [47] Chen D, Wang J A, Kang S. Comparison of backscattering lidar signal denoising methods[J]. Ship Science and Technology, 33, 93-97(2011).

    [48] He J F, Liu W Q, Zhang Y J et al. New method of lidar ceilometer backscatter signal processing based on Hilbert-Huang transform[J]. Infrared and Laser Engineering, 41, 397-403(2012).

    [49] Stephenson J H, Greenwood E. Effects of vehicle weight and true versus indicated airspeed on BVI noise during steady descending flight. [C]∥71st Annual AHS Forum and Technology Display, May 5-7, 2015, Virginia Beach, VA, USA.(2015).

    [50] Saeed U, Rocadenbosch F, Crewell S. Adaptive estimation of the stable boundary-layer height using backscatter LiDAR data and a Kalman filter. [C]∥2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), July 26-31, 2015, Milan, Italy. New York: IEEE, 3591-3594(2015).

    [51] Zhang H Y, Lv T, Yan C H. The novel role of arctangent phase algorithm and voice enhancement techniques in laser hearing[J]. Applied Acoustics, 126, 136-142(2017).

    [52] Wang Y F, Cao X M, Zhang J et al. Detection and analysis of all-day atmospheric water vapor Raman lidar based on wavelet denoising algorithm[J]. Acta Optica Sinica, 38, 0201001(2018).

    [53] Chang J H, Zhu L Y, Li H X et al. Noise reduction in Lidar signal using correlation-based EMD combined with soft thresholding and roughness penalty[J]. Optics Communications, 407, 290-295(2018).

    [55] Amzajerdian F, Pierrottet D, Tolson R H et al. Development of a coherent LiDAR for aiding precision soft landing on planetary bodies. [C]∥13th Coherent Laser Radar Conference, October 16-21, 2005, Kamakura, Japan., 20050240846(2005).

    [56] Falkowski M J. Smith A M S, Hudak A T, et al. Automated estimation of individual conifer tree height and crown diameter via two-dimensional spatial wavelet analysis of lidar data[J]. Canadian Journal of Remote Sensing, 32, 153-161(2006).

    [57] Wei H, Bartels M. Unsupervised segmentation using Gabor wavelets and statistical features in LIDAR data analysis. [C]∥18th International Conference on Pattern Recognition, August 20-24, 2006, Hong Kong, China. New York: IEEE, 667-670(2006).

    [58] van Gaalen J F, Kruse S E, Burroughs S M et al. . Time-frequency methods for characterizing cuspate landforms in lidar data[J]. Journal of Coastal Research, 25, 1143-1148(2009). http://www.bioone.org/doi/abs/10.2112/08-1019.1

    [59] Allen J D, Yuan J B, Liu X W et al. A compressed sensing method with analytical results for lidar feature classification[J]. Proceedings of SPIE, 8055, 80550G(2011). http://spie.org/Publications/Proceedings/Paper/10.1117/12.884370

    [60] He J, Zhang Q, Yang X Y et al. Imaging algorithm for inverse synthetic aperture imaging LADAR[J]. Infrared and Laser Engineering, 41, 1094-1100(2012).

    [61] Sobolev I, Babichenko S. Analysis of the performances of hyperspectral lidar for water pollution diagnostics[J]. EARSeL eProceedings, 12, 113-123(2013).

    [62] Deuge M D, Quadros A, Hung C et al. Australasian Conference on Robitics and Automation, December 2-4, 2013, University of New South Wales, Sydney Australia. Australian Robotics and Automation Association, 2013, N/A:, 98586(2013).

    [63] Wu Y H, Ruan H, Yu D B. Inverse synthetic aperture laser radar imaging algorithm for maneuvering targets. [C]∥2014 7th International Congress on Image and Signal Processing (CISP), October 14-16, 2014, Dalian, China. New York: IEEE, 569-574(2014).

    [64] Vercesi V, Onori D, Laghezza F et al. Frequency-agile dual-frequency lidar for integrated coherent radar-lidar architectures[J]. Optics Letters, 40, 1358-1361(2015). http://europepmc.org/abstract/MED/25831332

    [65] Konsoer K, Rhoads B, Best J et al. Length scales and statistical characteristics of outer bank roughness for large elongate meander bends:the influence of bank material properties, floodplain vegetation and flow inundation[J]. Earth Surface Processes and Landforms, 42, 2024-2037(2017). http://onlinelibrary.wiley.com/doi/10.1002/esp.4169/pdf

    [66] Wang N, Wang R, Mo D et al. Inverse synthetic aperture LADAR demonstration: system structure, imaging processing, and experiment result[J]. Applied Optics, 57, 230(2018). http://www.ncbi.nlm.nih.gov/pubmed/29328169

    [67] Youmans D G. Joint time-frequency transform processing for linear and sinusoidal FM coherent ladars[J]. Proceedings of SPIE, 5087, 46-57(2003). http://spie.org/Publications/Proceedings/Paper/10.1117/12.496934

    [68] Wang X Q, Dong Y Q, Yuan S et al. Study on simulation of micro-Doppler effect in lidar[J]. Laser Technology, 31, 117-119, 146(2007).

    [69] Gueguen P, Jolivet V, Michel C et al. Comparison of velocimeter and coherent lidar measurements for building frequency assessment[J]. Bulletin of Earthquake Engineering, 8, 327-338(2010). http://link.springer.com/article/10.1007/s10518-009-9137-2

    [70] He J, Zhang Q, Luo Y et al. Analysis of micro-doppler effect and feature extraction of target in inverse synthetic aperture imaging ladar[J]. Acta Electronica Sinica, 39, 2052-2059(2011).

    [71] Zhu F, Zhang Q, Feng Y Q et al. Compressed sensing identification approach for avian with inverse synthetic aperture lidar[J]. Infrared and Laser Engineering, 42, 256-261(2013).

    [72] Tahmoush D. Extracting and analyzing micro-Doppler from ladar signatures[J]. Proceedings of SPIE, 9461, 94611F(2015). http://spie.org/Publications/Proceedings/Paper/10.1117/12.2177570

    [73] Wang Y P, Hu Y H, Lei W H et al. Aircraft target classification method based on texture feature of laser echo time-frequency image[J]. Acta Optica Sinica, 37, 1128004(2017).

    CLP Journals

    [1] Ruohan Xie, Siyuan He, Guoqiang Zhu, Yunhua Zhang. Forward Parametric Modeling Based on Target Attribute Scattering Center Model[J]. Laser & Optoelectronics Progress, 2019, 56(12): 122901

    Yanping Liu, Chong Wang, Haiyun Xia. Application Progress of Time-Frequency Analysis for Lidar[J]. Laser & Optoelectronics Progress, 2018, 55(12): 120005
    Download Citation