• Chinese Journal of Quantum Electronics
  • Vol. 35, Issue 1, 86 (2018)
Weili MENG1、2、*, Chao DONG1、2, Juanjuan QI1、2, and Junwei CHEN1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461.2018.01.014 Cite this Article
    MENG Weili, DONG Chao, QI Juanjuan, CHEN Junwei. Performance of hybrid polymer solar cells based on graphene/CuInS2[J]. Chinese Journal of Quantum Electronics, 2018, 35(1): 86 Copy Citation Text show less
    References

    [1] Günes S, Neugebauer H, Sariciftci N S. Conjugated polymer-based organic solar cells[J]. Chem. Rev., 2007, 107(4): 1324-1338.

    [2] Yip H L, Jen K Y. Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells[J]. Energy Environ. Sci., 2012, 5: 5994-6011.

    [3] Rao C N R, Sood A K, Subrahmanyam K S, et al. Graphene: The new two-dimensional nanomaterial[J]. Angew. Chem. Int. Ed., 2009, 48(42): 7752-7777.

    [4] Tang L, Wang Y, et al. Preparation, structure and electrochemical properties of graphene modified electrode[J]. Adv. Funct. Mater., 2009, 19(17): 2782-2789.

    [5] Bonaccorso F, Sun Z, Hasan T, et al. Graphene photonics and optoelectronics[J]. Nat. Photonics, 2010, 4: 611-622.

    [6] Bae S, Kim H, Lee Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes[J]. Nat. Nanotechnol., 2010, 5: 574-578.

    [7] Wang X, Zhi L J, Mullen K. Transparent, conductive graphene electrodes for dye-sensitized solar cells[J]. Nano Lett., 2008, 8(1): 323-327.

    [8] Yin Z Y, Sun S Y, Salim T, et al. Organic photovoltaic devices using highly flexible reduced graphene oxide films as transparent electrode[J]. ACS Nano, 2010, 4(9): 5263-5268.

    [9] Lee Y Y, Tu K H, Yu C C, et al. Top laminated graphene electrode in a semitransparent polymer solar cell by simultaneous thermal annealing/releasing method[J]. ACS Nano, 2011, 5(8): 6564-6570.

    [10] Liu Z F, Liu Q, Huang Y, et al. Organic photovoltaic devices based on a novel acepptor material: Graphene[J]. Adv. Mater., 2008, 20(20): 3924-3930.

    [11] Wang H T, He D W, Wang Y S, et al. Organic photovoltaic devices based on graphene as an electron-acceptor material and P3OT as a donor material[J]. Phys. Status Solidi A, 2011, 208(10): 2339-2343.

    [12] Guo C, Yang H, Sheng Z, et al. Layered graphene/quantum dots for photovoltaic devices[J]. Angew. Chem. Int. Ed., 2010, 49(17): 3014-3017.

    [13] Yun J M, Yeo J S, Kim J, et al. Solution-processable reduced graphene oxide as a novel alternative to PEDOT: PSS hole transport layers for highly efficient and stable polymer solar cells[J]. Adv. Mater., 2011, 23(42): 4923-4928.

    [14] Liu X, Kim H, Guo L. Optimization of thermally reduced graphene oxide for an efficient hole transport layer in polymer solar cells[J]. Organic Electronics, 2013, 14(2): 591-598.

    [15] Lewerenz H J. Development of copper indium disulfide into a solar material[J]. Sol. Energ. Mat. Sol. C, 2004, 83(4): 395-407.

    [16] Klenk R, Klaer J, Scheer R, et al. Solar cells based on CuInS2-an overview[J]. Thin Solid Films, 2005, 480-481: 509-514.

    [17] Meng W, Zhou X, Qiu Z, et al. Reduced graphene oxide-supported aggregates of CuInS2 quantum dots as an effective hybrid electron acceptor for polymer-based solar cells[J]. Carbon, 2016, 96: 532-540.

    [18] Chen B, Zhong H, Zhang W, et al. Highly emissive and color-tunable CuInS2-based colloidal semiconductor nanocrystals: Off-stoichiometry effects and improved electroluminescence performance[J]. Adv. Funct. Mater., 2012, 22(10): 2081-2088.

    [19] Park J C, Nam Y S. Controlling surface defects of non-stoichiometric copper-indium-sulfide quantum dots[J]. J. Colloid Interface Sci., 2015, 460: 173-180.

    [20] Yoshino K, Nomoto K, Kinoshita A, et al. Dependence of Cu/In ratio of structural and electrical characterization of CuInS2 crystal[J]. J. Mater. Sci.-Mater. Electron., 2008, 19(4): 301-304.

    [21] Liu Q, Liu Z, Zhang X, et al. Polymer photovoltaic cells based on solution-processable graphene and P3HT[J]. Adv. Funct. Mater., 2009, 19(6): 894-904.

    [22] Dunn H K, Peter L M. How efficient is electron collection in dye-sensitized solar cells comparison of different dynamic methods for the determination of the electron diffusion length[J]. J. Phys. Chem. C, 2009, 113(11): 4726-4731.

    [23] Qi J J, Chen J W, Meng W L, et al. Recent advances in hybrid solar cells based on metal oxide nanostructures[J]. Synth. Metals, 2016, 222: 42-65.

    [24] Cui Q, Liu C W, Wu F, et al. Performance improvement in polymer/ZnO nanoarray hybrid solar cells by formation of ZnO/CdS-core/shell heterostructures[J]. J. Phys. Chem. C, 2013, 117(11): 5626-5637.

    [25] Noone K M, Subramaniyan S, Zhang Q F, et al. Photoinduced charge transfer and polaron dynamics in polymer and hybrid photovoltaic thin films: Organic vs inorganic acceptors[J]. J. Phys. Chem. C, 2011, 115(49): 24403-24410.

    [26] Wong D K P, Ku C H, Chen Y R, et al. Enhancing electron collection efficiency and effective diffusion length in dye-sensitized solar cells[J]. Chem. Phys. Chem., 2009, 10(15): 2698-2702.

    [27] Zhao J, Han J, Lu J P. Work functions of pristine and alkali-metal intercalated carbon nanotubes and bundles[J]. Phys. Rev. B, 2002, 65: 193401.

    [28] Potscavage W J Jr, Yoo S, Kippelen B. Origin of the open-circuit voltage in multilayer heterojunction organic solar cells[J]. Appl. Phys. Lett., 2008, 93: 193308.

    [29] Potscavage W J Jr, Sharma A, Kippelen B. Critical interfaces in organic solar cells and their influence on the open-circuit voltage[J]. Acc. Chem. Res., 2009, 42(11): 1758-1767.

    [30] Vandewal K, Tvingstedt K, Gadisa A, et al. Relating the open-circuit voltage to interface molecular properties of donor: Acceptor bulk heterojunction solar cells[J]. Phys. Rev. B, 2010, 81: 125204.

    [31] Moliton A, Nunzi JM. How to model the behaviour of organic photovoltaic cells[J]. Polym. Int., 2006, 55(6): 583-600.

    [32] Qi B, Wang J. Fill factor in organic solar cells[J]. Phys. Chem. Chem. Phys., 2013, 15: 8972-8982.

    MENG Weili, DONG Chao, QI Juanjuan, CHEN Junwei. Performance of hybrid polymer solar cells based on graphene/CuInS2[J]. Chinese Journal of Quantum Electronics, 2018, 35(1): 86
    Download Citation