• Acta Photonica Sinica
  • Vol. 50, Issue 6, 179 (2021)
Tuo WANG1、2, Hongmei CHEN2, Huimin JIA1, Zhonghui YAO2, Dan FANG1, Cheng JIANG2, Ziyang ZHANG2, Kexue LI1, Jilong TANG1, and Zhipeng WEI1
Author Affiliations
  • 1State Key Laboratory of Hight Power Seminconductor Laser, College of Science, Changchun University of Science and Technology, Changchun30022, China
  • 2Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Science, Suzhou, Jiangsu1513, China
  • show less
    DOI: 10.3788/gzxb20215006.0623002 Cite this Article
    Tuo WANG, Hongmei CHEN, Huimin JIA, Zhonghui YAO, Dan FANG, Cheng JIANG, Ziyang ZHANG, Kexue LI, Jilong TANG, Zhipeng WEI. Performance Research and Fabrication of 1 310 nm Superluminescent Diodes with High Power[J]. Acta Photonica Sinica, 2021, 50(6): 179 Copy Citation Text show less
    References

    [1] M D BAYLEYEGN, H MAKHLOUF, C CROTTI et al. Ultrahigh resolution spectral-domain optical coherence tomography at 1.3 μm using a broadband superluminescent diode light source. Optics Communications, 285, 5564-5569(2012).

    [2] M Z M KHAN, H H ALHASHIM et al. High-power and high-efficiency 1.3-μm superluminescent diode with flat-top and ultrawide emission bandwidth. IEEE Photonics Journal, 7, 1-8(2015).

    [3] L N KURBATOV, S S SHAKHIDZHANOV, L V BYSTROVA et al. Investigation of superluminescence emitted by a gallium arsenide diode. Soviet Physics Semiconductors-Ussr:, 1739(1971).

    [4] T TAKAYAMA, O IMAFUJI, Y KOUCHI et al. 100-mW high-power angled-stripe superluminescent diodes with a new real refractive-index-guided self-aligned structure. IEEE Journal of Quantum Electronics, 32, 1981-1987(1996).

    [5] H MA, S H CHEN, Xinjian YI et al. MOVPE Growth and Fabrication of 1.3μm High-Power InGaAsP-InP polarization-insensitive superluminescent diodes with complex strained quantum wells. Optical & Quantum Electronics, 36, 551-558(2004).

    [6] M ROSSETTI, A MARKUS, A FIORE et al. Quantum dot superluminescent diodes emitting at 1.3 μm. IEEE Photonics Technology Letters, 17, 540-542(2005).

    [7] L H LI, M ROSSETTI, A FIORE et al. Wide emission spectrum from superluminescent diodes with chirped quantum dot multilayers. Electronics Letters, 41, 41-43(2005).

    [8] L H KIM, I K HAN. InAs quantum dot superluminescent diodes with trench structure. Journal of Materials Science Materials in Electronics, 21, 445-449(2010).

    [9] S M CHEN, W LI, Z Y ZHANG et al. GaAs-Based superluminescent light emitting diodes with 290-nm emission bandwidth by using hybrid quantum well/quantum dot structures. Nanoscale Research Letters, 12, 1049(2015).

    [10] C C HOU, H M CHEN, J C ZHANG et al. Near-infrared and mid-infrared semiconductor broadband light emitters. Light: Science & Applications, 7, 17170(2018).

    [11] A S ANIKEEV, A BAGAEVT, S N II'CHENKO et al. Superluminescent diodes of the 770-790-nm range based on semiconductor nanostructures with narrow quantum wells. Quantum Electronics, 49, 810-813(2019).

    [12] D MARCUSE. Bending losses of asymmetric slab waveguide. Bell System Technical Journal, 50, 2551(1971).

    [13] H NAGAI, Y NOGUCHI, S SUDO. High‐power, high‐efficiency 1.3 μm superluminescent diode with a buried bent absorbing guide structure. Applied Physics Letters, 54, 1719-1721(1989).

    [14] Q AN, P JIN, J WU et al. Optical loss in bent waveguide superlμminescent diodes. Semiconductorence & Technology, 27, 68-69(2012).

    [15] C CHEN, P BERINI, D FENG et al. Efficient and accurate numerical analysis of multilayer planar optical waveguides in lossy anisotropic media. Optics Express, 7, 260-272(2000).

    [16] J LU, S HE, V G ROMANOV. A Simple and effective method for calculating the bending loss and phase enhancement of a bent planar waveguide. Fiber & Integrated Optics, 24, 25-36(2005).

    [17] Q AN, P JIN, Z G WANG. Estimation of the optical loss in bent-waveguide superlμminescent diodes by an analytical method. Journal of Semiconductors, 72-75(2015).

    [18] G B HOCKER, W K BURNS. Mode dispersion in diffused channel waveguides by the effective index method. Applied Optics, 16, 113-118(1977).

    [19] C Y LIU, Y QU, S YUAN et al. Optimization of ridge height for the fabrication of high performance InGaAsN ridge waveguide lasers with pulsed anodic oxidation. Applied Physics Letters, 85, 4594-4596(2004).

    [20] M R LEVIN, K EVANS-LUTTERODTET. The step coverage of CVD SiO2 glass films. Materials Letters, 1, 29-32(1982).

    [21] J K LAN, Y WANG, C G CHAO et al. Effect of substrate on the step coverage of plasma-enhanced chemical-vapor deposited tetraethylorthosilicate films. Journal of Vacuum Science & Technology B, 21, 1224-1229(2003).

    Tuo WANG, Hongmei CHEN, Huimin JIA, Zhonghui YAO, Dan FANG, Cheng JIANG, Ziyang ZHANG, Kexue LI, Jilong TANG, Zhipeng WEI. Performance Research and Fabrication of 1 310 nm Superluminescent Diodes with High Power[J]. Acta Photonica Sinica, 2021, 50(6): 179
    Download Citation