• Photonics Research
  • Vol. 8, Issue 12, 1937 (2020)
Shujie Pan1、†, Jianou Huang2、†, Zichuan Zhou1, Zhixin Liu1, Lalitha Ponnampalam1, Zizhuo Liu1, Mingchu Tang1, Mu-Chieh Lo1, Zizheng Cao2、5, Kenichi Nishi3, Keizo Takemasa3, Mitsuru Sugawara3, Richard Penty4, Ian White4, Alwyn Seeds1, Huiyun Liu1, and Siming Chen1、*
Author Affiliations
  • 1Department of Electronic and Electrical Engineering, University College London, Torrington Place, London, WC1E 7JE, United Kingdom
  • 2Institute of Photonic Integration, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
  • 3QD Laser, Inc., Kawasaki 210-0855, Japan
  • 4Centre for Photonics Systems, Department of Engineering, University of Cambridge, Cambridge CB3 0FA, United Kingdom
  • 5e-mail: z.cao@tue.nl
  • show less
    DOI: 10.1364/PRJ.399957 Cite this Article Set citation alerts
    Shujie Pan, Jianou Huang, Zichuan Zhou, Zhixin Liu, Lalitha Ponnampalam, Zizhuo Liu, Mingchu Tang, Mu-Chieh Lo, Zizheng Cao, Kenichi Nishi, Keizo Takemasa, Mitsuru Sugawara, Richard Penty, Ian White, Alwyn Seeds, Huiyun Liu, Siming Chen. Quantum dot mode-locked frequency comb with ultra-stable 25.5 GHz spacing between 20°C and 120°C[J]. Photonics Research, 2020, 8(12): 1937 Copy Citation Text show less
    References

    [1] N. Picqué, T. W. Hänsch. Frequency comb spectroscopy. Nat. Photonics, 13, 146-157(2019).

    [2] P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, C. Koos. Microresonator-based solitons for massively parallel coherent optical communications. Nature, 546, 274-279(2017).

    [3] B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, J. Ye. An optical lattice clock with accuracy and stability at the 10-18 level. Nature, 506, 71-75(2014).

    [4] L. Lundberg, M. Mazur, A. Mirani, B. Foo, J. Schröder, V. Torres-Company, M. Karlsson, P. A. Andrekson. Phase-coherent lightwave communications with frequency combs. Nat. Commun., 11, 201(2020).

    [5] A. J. Metcalf, H.-J. Kim, D. E. Leaird, A. J. Jaramillo-Villegas, K. A. McKinzie, V. Lal, A. Hosseini, G. E. Hoefler, F. Kish, A. M. Weiner. Integrated line-by-line optical pulse shaper for high-fidelity and rapidly reconfigurable RF-filtering. Opt. Express, 24, 23925-23940(2016).

    [6] C. Deakin, Z. Liu. Dual frequency comb assisted analog-to-digital conversion. Opt. Lett., 45, 173-176(2020).

    [7] W. Wang, K. V. Gasse, V. Moskalenko, S. Latkowski, E. Bente, B. Kuyken, G. A. Roelkens. III-V-on-Si ultra-dense comb laser. Light: Sci. Appl., 6, e16260(2017).

    [8] Z. Liu, S. Farwell, M. Wale, D. J. Richardson, R. Slavik. InP-based optical comb-locked tunable transmitter. Optical Fiber Communications Conference and Exhibition, Tu2K.2(2016).

    [9] E. U. Rafailov, M. A. Cataluna, W. Sibbett. Mode-locked quantum-dot lasers. Nat. Photonics, 1, 395-401(2007).

    [10] M. G. Thompson, A. R. Rae, M. Xia, R. V. Penty, I. H. White. InGaAs quantum-dot mode-locked laser diodes. IEEE J. Sel. Top. Quantum Electron., 15, 661-672(2009).

    [11] G. Carpintero, M. G. Thompson, R. V. Penty, I. H. White. Low noise performance of passively mode-locked 10-GHz quantum-dot laser diode. IEEE Photon. Technol. Lett., 21, 389-391(2009).

    [12] S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobieseierski, A. Seeds, I. Ross, P. M. Smowton, H. Liu. Electrically pumped continuous-wave III-V quantum dot lasers on silicon. Nat. Photonics, 10, 307-311(2016).

    [13] M. Liao, S. Chen, Z. Liu, Y. Wang, L. Ponnampalam, Z. Zhou, J. Wu, M. Tang, S. Shutts, Z. Liu, P. M. Smowton, S. Yu, A. Seeds, H. Liu. Low-noise 1.3 μm InAs/GaAs quantum dot laser monolithically grown on silicon. Photon. Res., 6, 1062-1066(2018).

    [14] T. Zhou, M. Tang, G. Xaing, B. Xiang, S. Hark, M. Martin, T. Baron, S. Pan, J. Park, Z. Liu, S. Chen, Z. Zhang, H. Liu. Continuous-wave quantum dot photonic crystal lasers grown on on-axis Si (001). Nat. Commun., 11, 977(2020).

    [15] Z. Liu, C. Hantschmann, M. Tang, Y. Lu, J. Park, M. Liao, S. Pan, A. M. Sanchez, R. Beanland, M. Martin, T. Baron, S. Chen, A. J. Seeds, I. White, R. Penty, H. Liu. Origin of defect tolerance in InAs/GaAs quantum dot lasers grown on silicon. J. Lightwave Technol., 38, 240-248(2020).

    [16] F. Kefelian, S. O’Donoghue, M. T. Todaro, J. G. McInerney, G. Huyet. RF linewidth in monolithic passively mode-locked semiconductor laser. IEEE Photon. Technol. Lett., 20, 1405-1407(2008).

    [17] E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il’inskaya, Y. M. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, N. N. Ledentsov. High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser. Appl. Phys. Lett., 87, 081107(2005).

    [18] M. G. Thompson, A. Rae, R. L. Sellin, C. Marinelli, R. V. Penty, I. H. White, A. R. Kovsh, S. S. Mikhrin, D. A. Livshits, I. L. Krestnikov. Subpicosecond high-power mode locking using flared waveguide monolithic quantum-dot lasers. Appl. Phys. Lett., 88, 133119(2006).

    [19] M. T. Todaro, J. P. Tourrenc, S. P. Hegarty, C. Kelleher, B. Corbett, G. Huyet, J. G. Mclnerney. Simultaneous achievement of narrow pulse width and low pulse-to-pulse timing jitter in 1.3 μm passively mode-locked quantum-dot lasers. Opt. Lett., 31, 3107-3109(2006).

    [20] S. Liu, J. C. Norman, D. Jung, M. Kennedy, A. Gossard, J. E. Bowers. Monolithic 9 GHz passively mode locked quantum dot lasers directly grown on on-axis (001) Si. Appl. Phys. Lett., 113, 041108(2018).

    [21] D. Auth, S. Liu, J. Norman, J. Edward Bowers, S. Breuer. Passively mode-locked semiconductor quantum dot on silicon laser with 400 Hz RF line width. Opt. Express, 27, 27256-27266(2019).

    [22] S. Liu, X. Wu, D. Jung, J. Norman, M. J. Kennedy, H. Tsang, A. Gossard, J. Bowers. High-channel-count 20  GHz passively mode-locked quantum dot laser directly grown on Si with 4.1  Tbit/s transmission capacity. Optica, 6, 128-134(2019).

    [23] G. Liu, Z. Lu, J. Liu, Y. Mao, M. Vachon, C. Song, P. Barrios, P. J. Poole. Passively mode-locked quantum dash laser with an aggregate 5.376  Tbit/s PAM-4 transmission capacity. Opt. Express, 28, 4587-4593(2020).

    [24] V. Vujicic, C. Calo, R. Watts, F. Lelarge, C. Browing, K. Merghem, A. Martinez, A. Ramdane, L. Barry. Quantum dash mode-locked lasers for data centre applications. IEEE J. Sel. Top. Quantum Electron., 21, 53-60(2015).

    [25] J. N. Kemal, P. Marin-Palomo, K. Merghem, G. Aubin, C. Calo, R. Brenot, F. Lelarge, A. Martinez, S. Randel, W. Freude, C. Koos. Coherent WDM transmission using quantum-dash mode-locked laser diodes as multi-wavelength source and local oscillator. Opt. Express, 27, 31164-31175(2019).

    [26] Z. Lu, J. Liu, C. Song, J. Weber, Y. Mao, S. Chang, H. Ding, P. Poole, P. Barrios, D. Poitras. High performance InAs/InP quantum dot 34.462-GHz C-band coherent comb laser module. Opt. Express, 26, 2160-2167(2018).

    [27] Y. Arakawa, H. Sakaki. Multidimensional quantum well laser and temperature dependence of its threshold current. Appl. Phys. Lett., 40, 939-941(1982).

    [28] K. Nishi, K. Takemasa, M. Sugawara, Y. Arakawa. Development of quantum dot lasers for data-com and silicon photonics applications. IEEE J. Sel. Top. Quantum Electron., 23, 1901007(2017).

    [29] M. A. Cataluna, W. Sibbett, D. A. Livshits, J. Weimert, A. R. Kovsh, E. U. Rafailov. Stable mode-locked operation up to 80°C from an InGaAs quantum-dot laser. Appl. Phys. Lett., 89, 1500-1502(2006).

    [30] J. K. Mee, M. T. Crowley, N. Patel, D. Murrell, R. Raghunathan, A. Aboketaf, A. Elshaari, S. F. Preble, P. Ampadu, L. F. Lester. A passively mode-locked quantum-dot laser operating over a broad temperature range. Appl. Phys. Lett., 101, 071112(2012).

    [31] M. Laemmlin, G. Fiol, C. Meuer, M. Kuntz, F. Hopfer, A. R. Kovsh, N. N. Ledentsov, D. Bimberg. Distortion-free optical amplification of 20–80  GHz modelocked laser pulses at 1.3  μm using quantum dots. Electron. Lett., 42, 697-699(2006).

    [32] K. Nishi, T. Kageyama, M. Yamaguchi, Y. Maeda, K. Takemasa, T. Yamamato, M. Sugawara, Y. Arakawa. Molecular beam epitaxial growths of high-optical-gain InAs quantum dots on GaAs for long-wavelength emission. J. Cryst. Growth, 378, 459-462(2013).

    [33] K. A. Williams, M. G. Thompson, I. H. White. Long-wavelength monolithic mode-locked diode lasers. New J. Phys., 6, 179(2004).

    [34] J. O’Gorman, A. F. J. Levi, T. Tanbun-Ek, R. A. Logan. Saturable absorption in intracavity loss modulated quantum well lasers. Appl. Phys. Lett., 59, 16-18(1991).

    [35] J. K. Mee, M. T. Crowley, D. Murrell, R. Raghunathan, F. Lester. Temperature performance of monolithic passively mode-locked quantum dot lasers: experiments and analytical modeling. IEEE J. Sel. Top. Quantum Electron., 19, 1101110(2013).

    [36] F. Klopf, S. Deubert, J. P. Reithmaier, A. Forchel. Correlation between the gain profile and the temperature-induced shift in wavelength of quantum-dot lasers. Appl. Phys. Lett., 81, 217-219(2002).

    [37] L. Li, M. Rossetti, A. Fiore, L. Occhi, C. Velez. Wide emission spectrum from superluminescent diodes with chirped quantum dot multi-layers. Electron. Lett., 41, 41-43(2005).

    [38] K. Zhou, Q. Jiang, Z. Zhang, S. Chen, H. Liu, Z. Lu, K. Kennedy, S. Matcher, R. Hogg. Quantum dot selective area intermixing for broadband light sources. Opt. Express, 20, 26950-26957(2012).

    [39] S. Chen, W. Li, Z. Zhang, D. Childs, K. Zhou, J. Orchard, K. Kennedy, M. Hugues, E. Clarke, I. Ross, O. Wada, R. Hogg. GaAs-based superluminescent light-emitting diodes with 290-nm emission bandwidth by using hybrid quantum well/quantum dot structures. Nanosc. Res. Lett., 10, 340(2015).

    CLP Journals

    [1] Jia-Jian Chen, Wen-Qi Wei, Jia-Le Qin, Bo Yang, Jing-Zhi Huang, Zi-Hao Wang, Ting Wang, Chang-Yuan Yu, Jian-Jun Zhang. Multi-wavelength injection locked semiconductor comb laser[J]. Photonics Research, 2022, 10(8): 1840

    Shujie Pan, Jianou Huang, Zichuan Zhou, Zhixin Liu, Lalitha Ponnampalam, Zizhuo Liu, Mingchu Tang, Mu-Chieh Lo, Zizheng Cao, Kenichi Nishi, Keizo Takemasa, Mitsuru Sugawara, Richard Penty, Ian White, Alwyn Seeds, Huiyun Liu, Siming Chen. Quantum dot mode-locked frequency comb with ultra-stable 25.5 GHz spacing between 20°C and 120°C[J]. Photonics Research, 2020, 8(12): 1937
    Download Citation