Jin-qiang CHANG, Ruo-yu ZHANG, Yu-jie PANG, Meng-yun ZHANG, Ya ZHA. Classification of Impurities in Machine-Harvested Seed Cotton Using Hyperspectral Imaging[J]. Spectroscopy and Spectral Analysis, 2021, 41(11): 3552

Search by keywords or author
- Spectroscopy and Spectral Analysis
- Vol. 41, Issue 11, 3552 (2021)

Fig. 1. Machine-harvested seed cotton and main impurities

Fig. 2. Hyperspectral imaging system
1: CCD camera; 2: Spectrograph; 3: Lens; 4: Halogen lamps ;5: Sample; 6: Stage; 7: Controller; 8: Computer
1: CCD camera; 2: Spectrograph; 3: Lens; 4: Halogen lamps ;5: Sample; 6: Stage; 7: Controller; 8: Computer

Fig. 3. Mean spectra of mechine-harvested cotton and impurities

Fig. 4. Eigenvalues and cumulative contribution rates of the first 6 principal components

Fig. 5. Scatter clusters of the first 2 principal components

Fig. 6. Scattering clusters of the first 2 variables of LDA
(a): All 6 types of materials; (b): Leaf, bell shell inner, stem
(a): All 6 types of materials; (b): Leaf, bell shell inner, stem

Fig. 7. Parameter optimization results of SVM model

Fig. 8. Parameter optimization results of ANN model

Fig. 9. Pie chart of prediction

Fig. 10. Hyperspectral image classification results in pixel level
(a): Original image; (b): Classification result
(a): Original image; (b): Classification result
|
Table 1. Accuracy and runtime of three classification models

Set citation alerts for the article
Please enter your email address