• Laser & Optoelectronics Progress
  • Vol. 59, Issue 10, 1028001 (2022)
Shujun Liao1、2, Haiyang Gao1、2、*, Leilei Kou1、2, Jiahui Kang2, Lingbing Bu1、2, and Zhen Wang1、2
Author Affiliations
  • 1Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu , China
  • 2School of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu , China
  • show less
    DOI: 10.3788/LOP202259.1028001 Cite this Article Set citation alerts
    Shujun Liao, Haiyang Gao, Leilei Kou, Jiahui Kang, Lingbing Bu, Zhen Wang. Simulation of Cloud and Aerosol Detection Based on Spaceborne Lidar[J]. Laser & Optoelectronics Progress, 2022, 59(10): 1028001 Copy Citation Text show less
    References

    [1] Li Z Q, Barker H W, Moreau L. The variable effect of clouds on atmospheric absorption of solar radiation[J]. Nature, 376, 486-490(1995).

    [2] Stephens G L. Cloud feedbacks in the climate system: a critical review[J]. Journal of Climate, 18, 237-273(2005).

    [3] Winker D M, Pelon J, Coakley J A, et al. The CALIPSO mission: a global 3D view of aerosols and clouds[J]. Bulletin of the American Meteorological Society, 91, 1211-1230(2010).

    [4] Hunt W H, Winker D M, Vaughan M A et al. CALIPSO lidar description and performance assessment[J]. Journal of Atmospheric and Oceanic Technology, 26, 1214-1228(2009).

    [5] Nam C C W, Quaas J. Evaluation of clouds and precipitation in the ECHAM5 general circulation model using CALIPSO and CloudSat satellite data[J]. Journal of Climate, 25, 4975-4992(2012).

    [6] Stephens G, Winker D M, Pelon J et al. CloudSat and CALIPSO within the a-train: ten years of actively observing the earth system[J]. Bulletin of the American Meteorological Society, 99, 569-581(2018).

    [7] Battaglia A, Kollias P, Dhillon R et al. Spaceborne cloud and precipitation radars: status, challenges, and ways forward[J]. Reviews of Geophysics, 58, e2019RG000686(2020).

    [8] Filipitsch F, Buras R, Fuchs M. Model studies on the retrieval of aerosol properties beneath cirrus clouds for a spaceborne HSRL[C], 1531, 452-455(2013).

    [9] Hogan R J. Fast approximate calculation of multiply scattered lidar returns[J]. Applied Optics, 45, 5984-5992(2006).

    [10] Delanoë J, Hogan R J. A variational scheme for retrieving ice cloud properties from combined radar, lidar, and infrared radiometer[J]. Journal of Geophysical Research Atmospheres, 113, D07204(2008).

    [11] Ehret G, Kiemle C, Wirth M et al. Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis[J]. Applied Physics B, 90, 593-608(2008).

    [12] Kawa S R, Mao J, Abshire J B et al. Simulation studies for a space-based CO2 lidar mission[J]. Tellus B: Chemical and Physical Meteorology, 62, 759-769(2010).

    [13] Mace G G, Zhang Q Q, Vaughan M et al. A description of hydrometeor layer occurrence statistics derived from the first year of merged Cloudsat and CALIPSO data[J]. Journal of Geophysical Research Atmospheres, 114, D00A26(2009).

    [14] Dong J F, Liu J Q, Zhu X L et al. Splitting ratio optimization of spaceborne high spectral resolution lidar[J]. Infrared and Laser Engineering, 48, S205001(2019).

    [15] Chen B L, Yang Z D, Min M et al. Application requirements and research progress of spaceborne Doppler wind lidar[J]. Laser & Optoelectronics Progress, 57, 190003(2020).

    [16] Xie Y Y, Liu J Q, Jiang J X et al. Wavelengths optimization to decrease error for a space-borne lidar measuring CO2 concentration[J]. Infrared and Laser Engineering, 43, 88-93(2014).

    [17] Hu X J, Tao J H, Zheng F et al. Introduction to parameterization scheme of physical process in WRF mode[J]. Gansu Science and Technology, 24, 73-75(2008).

    [18] Ryan B F. A bulk parameterization of the ice particle size distribution and the optical properties in ice clouds[J]. Journal of the Atmospheric Sciences, 57, 1436-1451(2000).

    [19] Hirohiko M. Satellite Data Simulator Unit (SDSU) ver. 2 user’s guide[EB/OL]. https://precip.isee.nagoya-u.ac.jp/sdsu/docs/UsersGuide-SDSUv2r2-1.pdf

    [20] Xu Y F, Chen H, Zhang Z J. Study on the fractal characteristics of size distribution of atmospheric aerosols[J]. Journal of Meteorology and Environment, 28, 8-14(2012).

    [21] Devasthale A, Thomas M A. A global survey of aerosol-liquid water cloud overlap based on four years of CALIPSO-CALIOP data[J]. Atmospheric Chemistry and Physics, 11, 1143-1154(2011).

    [22] Yang P, Baum B A, Heymsfield A J et al. Single-scattering properties of droxtals[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 79/80, 1159-1169(2003).

    [23] Hess M, Koepke P, Schult I. Optical properties of aerosols and clouds: the software package OPAC[J]. Bulletin of the American Meteorological Society, 79, 831-844(1998).

    [24] Liou K.N., Liou K N[M]. An introduction to atmospheric radiation(2004).

         [M]. 大气辐射导论(2004).

    [25] Cui H L. Research on atmospheric lidar signal simulation system based on HITRAN database[D], 17-40(2019).

    [26] Deng P, Zhang T S, Chen W et al. Estimating noise scale factor and SNR of atmospheric lidar[J]. Infrared and Laser Engineering, 45, S130003(2016).

    [27] Xia J R, Zhang L. Advances in detecting aerosols with Mie lidar[J]. Arid Meteorology, 24, 68-72, 81(2006).

    [28] Pan H L. Analysis of cirrus physical properties over Nanjing, China based on the CloudSat and CALIPSO satellite data[D], 13-18(2017).

    Shujun Liao, Haiyang Gao, Leilei Kou, Jiahui Kang, Lingbing Bu, Zhen Wang. Simulation of Cloud and Aerosol Detection Based on Spaceborne Lidar[J]. Laser & Optoelectronics Progress, 2022, 59(10): 1028001
    Download Citation