• Chinese Optics Letters
  • Vol. 21, Issue 6, 060601 (2023)
Pengfa Chang1, Chen Wang1, Tao Jiang1, Longsheng Wang1, Tong Zhao1, Hua Gao1, Zhiwei Jia1, Yuanyuan Guo1, Yuncai Wang2, and Anbang Wang1、2、*
Author Affiliations
  • 1Key Laboratory of Advanced Transducers & Intelligent Control Systems, Ministry of Education and Shanxi Province, College of Physics & Optoelectronic Engineering, Taiyuan University of Technology, Taiyuan 030024, China
  • 2Guangdong Provincial Key Laboratory of Photonics Information Technology, School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China
  • show less
    DOI: 10.3788/COL202321.060601 Cite this Article Set citation alerts
    Pengfa Chang, Chen Wang, Tao Jiang, Longsheng Wang, Tong Zhao, Hua Gao, Zhiwei Jia, Yuanyuan Guo, Yuncai Wang, Anbang Wang. Optical scrambler using WGM micro-bottle cavity[J]. Chinese Optics Letters, 2023, 21(6): 060601 Copy Citation Text show less
    References

    [1] A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, K. A. Shore. Chaos-based communications at high bit rates using commercial fibre-optic links. Nature, 438, 343(2005).

    [2] B. Wu, Z. Wang, B. J. Shastri, M. P. Chang, N. A. Frost, P. R. Prucnal. Temporal phase mask encrypted optical steganography carried by amplified spontaneous emission noise. Opt. Express, 22, 954(2014).

    [3] Z. Pan, L. Zhang. Optical cryptography-based temporal ghost imaging with chaotic laser. IEEE Photon. Tech. Lett., 29, 1289(2017).

    [4] A. Uchida, R. Mcallister, R. Meucci, R. Roy. Generalized synchronization of chaos in identical systems with hidden degrees of freedom. Phys. Rev. Lett., 91, 174101(2003).

    [5] K. Yoshimura, J. Muramatsu, P. Davis, T. Harayama, H. Okumura, S. Morikatsu, H. Aida, A. Uchida. Secure key distribution using correlated randomness in lasers driven by common random light. Phys. Rev. Lett., 108, 070602(2012).

    [6] B. C. Grubel, B. T. Bosworth, M. R. Kossey, H. Sun, A. B. Cooper, M. A. Foster, A. C. Foster. Silicon photonic physical unclonable function. Opt. Express, 25, 12710(2017).

    [7] L. Wang, D. Wang, H. Gao, Y. Guo, Y. Wang, Y. Hong, K. A. Shore, A. Wang. Real-time 2.5-Gb/s correlated random bit generation using synchronized chaos induced by a common laser with dispersive feedback. IEEE J. Quantum Electron., 56, 2000208(2020).

    [8] T. Yomamoto, I. Oowada, H. Yip, A. Uchida, S. Yoshimori, K. Yoshimura, J. Muramatsu, S.-I. Goto, P. Davis. Common-chaotic-signal induced synchronization in semiconductor lasers. Opt. Express, 15, 3974(2007).

    [9] S. Sunada, K. Arai, K. Yoshimura, M. Adachi. Optical phase synchronization by injection of common broadband low-coherent light. Phys. Rev. Lett., 112, 204101(2014).

    [10] M. Tomiyama, K. Yamasaki, K. Arai, M. Inubushi, K. Yoshimura, T. Uchida. Effect of bandwidth limitation of optical noise injection on common-signal-induced synchronization in multi-mode semiconductor lasers. Opt. Express, 26, 13521(2018).

    [11] H. Gao, A. Wang, L. Wang, Z. Jia, Y. Guo, Z. Gao, L. Yan, Y. Qin, Y. Wang. 0.75 Gbit/s high-speed classical key distribution with mode-shift keying chaos synchronization of Fabry–Perot lasers. Light Sci. Appl., 10, 172(2021).

    [12] Y. Xiao, T. Deng, Z.-M. Wu, J.-G. Wu, X. D. Lin, X. Tang, L.-B. Zeng, G. Q. Xia. Chaos synchronization between arbitrary two response VCSELs in a broadband chaos network driven by a bandwidth-enhanced chaotic signal. Opt. Commun., 285, 1442(2012).

    [13] N. Jiang, C. Xue, D. Liu, Y. Lv, K. Qiu. Secure key distribution based on chaos synchronization of VCSELs subject to symmetric random-polarization optical injection. Opt. Lett., 42, 1055(2017).

    [14] A. Zhao, N. Jiang, Y. Wang, S. Liu, B. Li, K. Qiu. Correlated random bit generation based on common-signal-induced synchronization of wideband complex physical entropy sources. Opt. Lett., 44, 5957(2019).

    [15] C. Xue, H. Wan, P. Gu, N. Jiang, Y. Hong, Z. Zhang. Ultrafast secure key distribution based on random DNA coding and electro-optic chaos synchronization. IEEE J. Quantum Electron., 58, 8000108(2022).

    [16] W. Liu, Z. Yin, X. Chen, Z. Peng, H. Song, P. Liu, X. Tong, Y. Zhang. A secret key distribution technique based on semiconductor superlattice chaos devices. Sci. Bull., 63, 1034(2018).

    [17] R. Horstmeyer, B. Judkewitz, I. M. Vellekoop, S. Assawaworrarit, C. Yang. Physical key-protected one-time pad. Sci. Rep., 3, 3543(2013).

    [18] O. Buskila, A. Eyal, M. Shtaif. Secure communication in fiber optic systems via transmission of broad-band optical noise. Opt. Express, 16, 3383(2008).

    [19] K. E. Webb, M. Erkintalo, S. Coen, S. G. Murdoch. Experimental observation of coherent cavity soliton frequency combs in silica microspheres. Opt. Lett., 41, 4613(2016).

    [20] D. K. Armani, T. J. Kippenberg, S. M. Spillane, K. J. Vahala. Ultra-high-Q toroid microcavity on a chip. Nature, 421, 925(2003).

    [21] N. Jiang, A. Zhao, S. Liu, C. Xue, B. Wang, K. Qiu. Generation of broadband chaos with perfect time delay signature suppression by using self-phase-modulated feedback and a microsphere resonator. Opt. Lett., 43, 5359(2018).

    [22] M. Pöllinger, D. O’Shea, F. Warken, A. Rauschenbeutel. Ultrahigh-Q tunable whispering-gallery-mode microresonator. Phys. Rev. Lett., 103, 053901(2009).

    [23] H. Koizumi, S. Morikatsu, H. Aida, T. Nozawa, I. Kakesu, A. Uchida, K. Yoshimura, J. Muramatsu, P. Davis. Information-theoretic secure key distribution based on common random-signal induced synchronization in unidirectionally-coupled cascades of semiconductor lasers. Opt. Express, 21, 17869(2013).

    [24] K. Zhang, Y. Wang, Y.-H. Wu. Enhanced Fano resonance in a non-adiabatic tapered fiber coupled with a microresonator. Opt. Lett., 42, 2956(2017).

    [25] Y. Miao, Y. Peng, Y. Xiang, M. Li, Y. Lu, Y. Song. Dynamic Fano resonance in thin fiber taper coupled cylindrical microcavity. IEEE Photon. J., 8, 4502806(2016).

    [26] C. Bandt, B. Pompe. Permutation entropy: a natural complexity measure for time series. Phys. Rev. Lett., 88, 174102(2002).

    [27] L. Zunino, O. A. Rosso, M. C. Soriano. Characterizing the hyperchaotic dynamics of a semiconductor laser subject to optical feedback via permutation entropy. IEEE J. Sel. Top. Quantum Electron., 17, 1250(2011).

    [28] M. Cai, O. Painter, K. J. Vahala. Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system. Phys. Rev. Lett., 85, 74(2000).

    [29] S. Zhu, L. Shi, S. Yuan, X. Xu, X. Zhang. All-optical control of ultrahigh-Q silica microcavities with iron oxide nanoparticles. Opt. Lett., 42, 5133(2017).

    [30] S. Zhu, L. Shi, B. Xiao, X. Zhang, X. Fan. All-optical tunable microlaser based on an ultrahigh-Q erbium-doped hybrid microbottle cavity. ACS Photonics, 5, 3794(2018).

    [31] S. Zhu, W. Wang, L. Ren, C. Gong, Y.-C. Chen, L. Shi, X. Zhang. Thermal gradient induced transparency and absorption in a microcavity. Laser Photon. Rev., 17, 2200644(2023).

    Data from CrossRef

    [1] Junwei Xu, Tong Zhao, Pengfa Chang, Chen Wang, Anbang Wang. Photonic reservoir computing with a silica microsphere cavity. Optics Letters, 48, 3653(2023).

    Pengfa Chang, Chen Wang, Tao Jiang, Longsheng Wang, Tong Zhao, Hua Gao, Zhiwei Jia, Yuanyuan Guo, Yuncai Wang, Anbang Wang. Optical scrambler using WGM micro-bottle cavity[J]. Chinese Optics Letters, 2023, 21(6): 060601
    Download Citation