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An optical scrambler using a whispering-gallery-mode (WGM) micro-bottle cavity to scramble a complex optical signal to
generate an uncorrelated output is proposed. We experimentally demonstrated this micro-cavity scrambler by using cha-
otic laser light as the incident signal and studied the influence of the coupling state. Experiments achieved full scrambling
with a low cross correlation of 0.028 between the output and the input. Results indicate that the scrambling effect orig-
inates from the interference among numerous WGMs in the bottle cavity. It is believed that the micro-bottle cavity with an
efficient scrambling function can become a promising candidate for encryption.
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1. Introduction

Optical scramblers that scramble optical temporal waveform
signals have significant applications in cryptography[1–4].
For example, applying a pair of optical scramblers on a public
random signal can generate two identical private random signals
for physical key distribution[5]. Furthermore, if the scrambling
effect is irreversible, then optical scramblers can also be used for
physical one-way functions[6]. Note that for above cryptography
applications, dissimilarity between the input and the output of
the optical scrambler is very important for security.
Scrambling can be realized by the nonlinear response in an

optical or opto-electronic system, typically including semicon-
ductor lasers[5,7–15] and optical dispersive devices[16–18]. For
semiconductor lasers, the scrambling effect originates from the
nonlinear laser dynamics induced by injecting input light and by
delayed self-feedback[7]. Several types of semiconductor lasers,
such as distributed feedback Bragg lasers[7–9], Fabry–Perot
lasers[10,11], and vertical-cavity surface-emitting lasers[12,13],
have been proved to have a scrambling effect. Unfortunately,
for typical complex signals, such as chaotic light[8,12] and noise
light[9,10], the input-output correlation values are still high and
thus the scrambling effect needs to be improved. For example,
amplitude-constant phase-random light[5,14] was proposed for
reducing the input-output correlation of semiconductor lasers.
Optical dispersive devices like chirped fiber Bragg gratings pro-
vide a scrambling scheme with low input-output correlation[18].

The main issue is that its simple hardware structure could be
duplicated by an eavesdropper.
We notice that whispering-gallery-mode (WGM) microcav-

ities have nonlinear feature responses due to nonuniform
transmission spectra[19] and long photon lifetimes[20]. The non-
uniform transmission causes the nonuniform filter effect, and
the long lifetime of photons in the cavity makes more modes
interfere. Thus, the scrambling effect of a WGM microcavity
in a wide-spectrum input can be expected. Most recently,
Jiang et al. used a WGM microsphere cavity and self-phase
modulated feedback to generate broadband chaos[21]. Their
work focused on chaos bandwidth and time-delay signature,
but the input-output correlation was not studied, which is the
basic feature for a scrambler.
In this Letter, we experimentally demonstrate an optical

scrambler using a WGMmicro-bottle cavity (MBC). Compared
with the microsphere cavity, the MBC has a longer axis[22],
which provides a more complex mode-field distribution and a
broader coupling area. These features could generate high effi-
ciency coupling and increase the number of modes, which are
beneficial to the scrambling effect. To experimentally verify the
scrambling effect of the MBC, a chaotic light is used as the input
light. The scrambling effects, as well as the signal complexity at
different coupling states, have been explored. Experimental
results show that high-quality scrambling with a low input-
output correlation near 0.03 can be achieved under the over-
coupling state, accompanied by complexity enhancement.
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2. Experimental Results and Discussion

The schematic diagram is shown in Fig. 1(a). An optical input
signal is coupled into an MBC through a tapered fiber (TF) and
then its temporal waveform is scrambled. The output signal thus
has a waveform uncorrelated to the input. A verification experi-
ment was carried out by using a chaotic light as the input signal.
The experimental setup is shown in Fig. 1(b). The chaotic input
light is generated by a distributed feedback Bragg (DFB) laser
with optical feedback from an external mirror. In the feedback
path, a polarization controller and an attenuator are used to
adjust the polarization state and feedback strength, respectively.
A proportion of the chaotic light, after being amplified by an
erbium-doped fiber amplifier, is injected into the MBC through
the TF. Note that the output waveform is sensitive to the polari-
zation state of input light, and thus a polarization controller is
inserted before the MBC. A 3 dB coupler taps into a portion of
the input light, which, together with the output light, is detected
using a real-time oscilloscope (Tektronix DPO73000, 30 GHz
bandwidth) with photodetectors (Finisar XPDV2120RA,
40 GHz bandwidth).
The inset of Fig. 1(b) shows the photomicrograph of theMBC

and the TF (the horizontal thin line). The MBC was made by
pulling and discharging two sections of a single-mode fiber with
a fiber fusion splicer. Themaximum diameter and total length of
theMBC are 120 μmand 700 μm, respectively. The intrinsicQ of
the cavity is up to 107. The TF was made by pulling and heating a
commercial single-mode fiber, and the thinnest diameter is
about 1.6 μm. The bottle was set with an angle of about 34° to
the TF. Both the TF and the MBC can be precisely positioned by
3-D positioning stages, and the coupling state can be adjusted.
The scrambling effect is characterized by the cross-correlation

coefficient (CC) between the input and the output waveforms.
The CC is defined as h�Ix − hIxi��Iy − hIyi�i=σxσy, where Ix
and Iy are the time series of two signals, σx and σy are their stan-
dard deviations, and h·i denotes the mean operator[23].
In our experiments, the DFB laser was biased at 80 mA

(threshold current 23 mA), and its free-running wavelength

was stabilized at 1548.822 nm using a temperature controller.
The length of the feedback fiber path was about 16 m, and
the corresponding feedback delay τ is about 80 ns. The optical
feedback strength was adjusted to 0.2, calculated by the power
ratio of the feedback light to the laser output. The chaotic light
output from the DFB laser was used as the input signal, and
its optical spectrum is shown in the gray line (red online) in
Fig. 2(a). We further measured the MBC transmission spectrum
as the wavelength-dependent transmissivity by scanning the
wavelength of a tunable narrow-linewidth laser (Yenista-
T100s, 400 kHz linewidth). The black line in Fig. 2(a) shows
a transmission spectrum of the MBC, which was obtained with
a coupling position close to the waist of the TF and an angle of
about 34° between the MBC axis and the TF axis. There are
many transmission lines with different heights, which are a kind
of Fano-like line shape, that are introduced because of the large
coupling loss[24,25]. Figure 2(b) plots the probability distribution
of the transmission line heights. The transmittivity concentrates
within the range from 0 to 0.2. The average transmission inten-
sity (ATI) is calculated as 0.114, which is used to characterize the
coupling strength between the TF and the MBC. As indicated in
the transmission spectrum, each frequency component of the
input light undergoes a different change. As a result, the scram-
bling effect will appear on the output signal.
Figure 3 shows the time-frequency characteristics of the input

and output of the MBC under the coupling condition corre-
sponding to Fig. 2. As shown in Fig. 3(a), the radio frequency
(RF) spectrum of the input (blue online) is concentrated near
the laser relaxation oscillation frequency. Clearly, the RF spec-
trum of the output light (red) becomes different. The low-
frequency components are raised, and the peak at the relaxation
frequency disappears. Moreover, the temporal waveforms of the
input and the output are vastly different, as shown in Fig. 3(b).
The CC between them is only calculated as 0.028, as shown in
Fig. 3(c). The low correlation is also displayed in the scatter plot
in the inset. The above results prove that the MBC scrambles the
chaotic signal. There are no other peaks in the correlation except
the time-delay signature of the feedback DFB laser, which indi-
cates that in the output there is no intrinsic feature of the cavity.
Further, we calculate the permutation entropy (PE) to analyze

whether there is complexity enhancement. The permutation

Fig. 1. (a) The schematic diagram of the scrambler using MBC and (b) the
experimental setup. DFB, distributed-feedback laser; VOA, optical attenuator;
PC, polarization controller; M, mirror; EDFA, erbium-doped fiber amplifier; MBC,
micro-bottle cavity; PD, photodetector; OSC, oscilloscope. Inset: the coupling
picture of the tapered fiber and the micro-bottle cavity.

Fig. 2. (a) The transmission spectrum of the MBC (black) and the optical spec-
trum of the chaotic input (red line), (b) the probability distribution of the trans-
mission intensity corresponding to (a). The ATI is calculated as the quotient of
the summation of intensities on the spectrum divided by the number of data
points.

Vol. 21, No. 6 | June 2023 Chinese Optics Letters

060601-2



entropy of the time series is calculated as hp = −�Σ�p�πi� ×
ln p�πi��= ln�m!�, where m is the embedding dimension, p�πi�
is the ordinal pattern probability, and i = 1, : : : ,m![26]. We
chose m = 4 as Ref. [27] did. Note that the embedding delay
te is required for phase-space reconstruction and will affect
the PE because it changes elements of the reconstructed vectors.
Figure 3(d) plots the PE as a function of the embedding delay of
the input and output signals. Both curves have several minima
locating at τ=3, τ=2, and τ, where τ is the feedback delay of the
chaotic laser. The PE value is calculated by the average of all the
minima. As a result, a small PE enhancement can be found from
0.9761 to 0.9855.
By fine adjusting the coupling point position along the axis

of the TF, one can obtain different scrambling effects.
Figures 4(a1)–4(a3) plot three typical transmission spectra of
the MBC. The time series, RF spectra, correlation curves, and
PE curves of the corresponding output and input signals are
plotted in columns 2–5 in Fig. 4.

Figure 4(a1) represents a state of under coupling in which
about half the light power of the resonance wavelength could
couple into the cavity. The ATI is 0.963. In this case, the
input-output correlation is 0.855, and the PE is slightly
decreased by 0.0003. The waveform and RF spectrum of the out-
put are similar to those of the input. The coupling point moves
toward the waist of the TF, where it has the thinnest diameter,
the coupling strength increases accordingly, and the bottoms of
some coupling notches reach 0. Here, we call the state that the
bottoms of many modes reach 0 the critical coupling state, as
shown in Fig. 4(a2). The ATI is 0.752. Both the coupling strength
and themode density are larger than those of the under coupling
state. The CC reduces to 0.698. The low-frequency component
of the RF spectrum is flat, and the PE enhancement is 0.0003, as
shown in Figs. 4(d2) and 4(e2), respectively.
The cavity moves continuously and the coupling strength will

keep on increasing and achieve an over coupling state. Nearly all
the pump light could couple into the cavity[28], but only some of
those whose wavelength resonances with the WGMs could per-
sist in the cavity and be coupled back to the TF, which behave as
the peaks and are shown in Fig. 4(a3). In this state, most of the
light on the transmission spectrum has traveled to the cavity, the
ATI is low, and the filter effect on the output is evident. The RF
spectrum of the output is completely different from the input
one, and its CC decreases to 0.077. The energy in the RF spec-
trum concentrates on the low frequency in Fig. 4(d3), and the PE
is clearly enhanced with the value of 0.0023.
Figure 5 shows the effects of the coupling position on the

scrambling effects. The coupling position d is defined as the dis-
tance from the coupling point to the thinnest point of the TF.

Fig. 4. (a1)–(a3) Transmission spectra of the coupling MBC with ATI = 0.963,
0.752, and 0.148. (b1)–(b3) The time series, (c1)–(c3) the cross correlation
curves, (d1)–(d3) the RF spectra, and (e1)–(e3) the permutation entropy curves.

Fig. 5. (a) The ATI of the MBC, (b) the input-output correlation CC, and (c) the
PE enhancement as a function of the coupling position (d), which is defined as
the distance from the coupling point to the thinnest point of the tapered fiber,
shown in the inset of (a).

Fig. 3. (a) RF spectra, (b) time series, (c) cross correlation, and (d) permutation
entropy curves of the input and output of the MBC. The light gray area in
(a) represents the background noise. The inset in (c) shows the scatter plot
between the input and output, and τ is the feedback delay of the chaotic laser.

Chinese Optics Letters Vol. 21, No. 6 | June 2023

060601-3



Figure 5(a) shows that the ATI of the MBC transmission spec-
trum will decrease from a plateau down to another one as d
reduces. As d > 6mm, the ATIs are close to 0.995, denoting
states of under coupling. As d < 4mm, the ATIs are below
0.390, meaning over coupling states. The middle region can be
treated as critical coupling states. As shown in Figs. 5(b) and
5(c), the input-output CC changes with a highly similar trend
to that of the ATI, but the PE enhancement is opposite.
These trends show that effective scrambling and complexity
enhancement can be achieved with over coupling states. In
Ref. [21], the coupling state is similar to the critical coupling
in which the coupling strength is not strong enough, and the
power coupled back to the TF from the cavity is low. Thus, what
they achieved is time-delay signature suppression, not time-
sequence scrambling.
This scrambling effect with the over coupling state could be

explained by the following mechanisms. At the over coupling
state, there are a lot of modes with strong coupling strength,
shown as the low intensity in the transmission spectrum. Thus,
the interference among the numerous modes will be strong, and
the time sequence will be distorted conspicuously, which makes
the cross correlation between the input and output very low and
enhances the signal’s complexity, i.e. the permutation entropy.
However, at the under coupling state, the coupling strength is
weak, and the number of modes in the transmission spectrum
is small. The energy coupled back to the TF is small, and the
inference among the modes is thin, which makes the scrambling
effect insignificant. By increasing the coupling strength, the cou-
pling modes will increase, and the interference, as well as scram-
bling effect, becomes stronger. The trends of parameters in Fig. 5
coincide with this theory. By the above analysis, the CC and the
PE enhancement depend on the density of the modes, which is
related to the size of the cavity, and this needs further study.
After demonstrating the waveform scrambling effects of the

MBC, we should discuss some issues that remain for future
work, to promote practical applications such as key distribution.
According to Ref. [5], scramblers used for key distribution usu-
ally should be controllable by adjusting the parameters to pro-
duce uncorrelated outputs for identical input. The current MBC
used in our experiment is a passive device and lacks tunable
parameters. However, we experimentally found that the MBC
output is sensitive to the polarization and the wavelength of
the input. Thus, by inserting an additional polarization control-
ler into the cavity before injection, the control of the output can
be realized. The other possible way is to integrate an active
device on the cavity to adjust the transmission spectrum by
opto-thermal modulation[29–31]. Moreover, the over coupling
state leads to a large insertion loss. Fortunately, for key distribu-
tion, the output signals are used in local to extract random bits
and thus are not to be transmitted. Thus, the insertion loss can
be acceptable.

3. Conclusion

In summary, we have proposed an optical scrambler based on a
WGM micro-bottle cavity. Due to the interference among

numerous WGMs in the cavity, efficient scrambling of the cha-
otic signal is realized. In the experiment, the scrambling effect
under different coupling states has been analyzed and illustrated.
The CC between the input and the output is only 0.028, and the
PE is improved clearly. It has the advantages of low cost, simple
structure, and high scrambling efficiency, and has great potential
for applications such as encryption, key distribution, authenti-
cation, and optical neural calculation.
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