• Journal of Inorganic Materials
  • Vol. 36, Issue 4, 347 (2021)
Qingyu YANG1、2, Pengfei QIU1、2, Xun SHI1、2、*, and Lidong CHEN1、2
Author Affiliations
  • 11. Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
  • 22. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.15541/jim20200417 Cite this Article
    Qingyu YANG, Pengfei QIU, Xun SHI, Lidong CHEN. Application of Entropy Engineering in Thermoelectrics[J]. Journal of Inorganic Materials, 2021, 36(4): 347 Copy Citation Text show less
    References

    [2] J ZHU T, T LIU Y, G FU C et al. Compromise and synergy in high-efficiency thermoelectric materials. Advanced Materials, 29, 26(2017).

    [3] A SLACK G, D ROWE. CRC Handbook of Thermoelectrics. Boca Raton, FL: CRC press, 407-440(1995).

    [4] L HICKS, DRESSELHAUS. Thermoelectric figure of merit of a one-dimensional conductor. Physical Review B, 47, 16631(1993).

    [5] X SHI, W ZHANG, D CHEN L et al. Filling fraction limit for intrinsic voids in crystals: doping in skutterudites. Physical Review Letters, 95, 185503(2005).

    [6] X SHI, H KONG, P LI C et al. Low thermal conductivity and high thermoelectric figure of merit in n-type BaxYbyCo4Sb12 double-filled skutterudites. Applied Physics Letters, 92, 182101(2008).

    [7] X SHI, J YANG, R SALVADOR J et al. Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. Journal of the American Chemical Society, 133, 7837-7846(2011).

    [8] Y PEI, X SHI, A LALONDE et al. Convergence of electronic bands for high performance bulk thermoelectrics. Nature, 473, 66-69(2011).

    [9] H LIU, X SHI, F XU et al. Copper ion liquid-like thermoelectrics. Nature Materials, 11, 422-425(2012).

    [10] R LIU, H CHEN, K ZHAO et al. Entropy as a gene-like performance indicator promoting thermoelectric materials. Advanced Materials, 29, 1702712(2017).

    [11] W YEH J, K CHEN S, J LIN S et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced Engineering Materials, 6, 299-303(2004).

    [12] N SENKOV O, D MILLER J, B MIRACLE D et al. Accelerated exploration of multi-principal element alloys with solid solution phases. Nature Communications, 6, 1-10(2015).

    [13] Y ZHANG, T ZUO T, Z TANG et al. Microstructures and properties of high-entropy alloys. Progress in Materials Science, 61, 1-93(2014).

    [14] C WEI P, N LIAO C, J WU H et al. Thermodynamic routes to ultralow thermal conductivity and high thermoelectric performance. Advanced Materials, 32, 1906457(2020).

    [15] B MIRACLE D, D MILLER J, N SENKOV O et al. Exploration and development of high entropy alloys for structural applications. Entropy, 16, 494-525(2014).

    [16] Y ZHANG, T ZUO T, Q CHENG Y et al. High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability. Scientific Reports, 3, 1455(2013).

    [17] S LUCAS M, D BELYEA, C BAUER et al. Thermomagnetic analysis of FeCoCrxNi alloys: magnetic entropy of high-entropy alloys. Journal of Applied Physics, 113, 17A923(2013).

    [18] P KOZELJ, S VRTNIK, A JELEN et al. Discovery of a superconducting high-entropy alloy. Physical Review Letters, 113, 5(2014).

    [19] F KAO Y, K CHEN S, H SHEU J et al. Hydrogen storage properties of multi-principal-component CoFeMnTixVyZrz alloys. International Journal of Hydrogen Energy, 35, 9046-9059(2010).

    [20] D BERARDAN, S FRANGER, D DRAGOE et al. Colossal dielectric constant in high entropy oxides. Physica Status Solidi-Rapid Research Letters, 10, 328-333(2016).

    [21] D BERARDAN, S FRANGER, K MEENA A et al. Room temperature lithium superionic conductivity in high entropy oxides. Journal of Materials Chemistry A, 4, 9536-9541(2016).

    [22] S SHAFEIE, S GUO, Q HU et al. High-entropy alloys as high-temperature thermoelectric materials. Journal of Applied Physics, 118, 184905(2015).

    [23] S RA. Thermodynamics of Solids. New York: John Wiley and Sons, 178(1972).

    [24] H SONOMURA. Internal strain energy in quaternary III-V compound alloys. Journal of Applied Physics, 59, 739-742(1986).

    [25] W SLAUGHTER, J PETROLITO. The linearized theory of elasticity. Applied Mechanics Reviews, 55, B90(2002).

    [26] N GREAVES G, A GREER, S LAKES R et al. Poisson's ratio and modern materials. Nature Materials, 10, 823-837(2011).

    [27] J YANG, P MEISNER G, L CHEN. Strain field fluctuation effects on lattice thermal conductivity of ZrNiSn-based thermoelectric compounds. Applied Physics Letters, 85, 1140-1142(2004).

    [28] P MEISNER G, T MORELLI D, S HU et al. Structure and lattice thermal conductivity of fractionally filled skutterudites: solid solutions of fully filled and unfilled end members. Physical Review Letters, 80, 3551-3554(1998).

    [29] T PLIRDPRING, K KUROSAKI, A KOSUGA et al. Chalcopyrite CuGaTe2: a high-efficiency bulk thermoelectric material. Advanced Materials, 24, 3622-3626(2012).

    [30] N CHENG, R LIU, S BAI et al. Enhanced thermoelectric performance in Cd doped CuInTe2 compounds. Journal of Applied Physics, 115, 163705(2014).

    [31] Y QIN, P QIU, R LIU et al. Optimized thermoelectric properties in pseudocubic diamond-like CuGaTe2 compounds. Journal of Materials Chemistry A, 4, 1277-1289(2016).

    [32] F GASCOIN, S OTTENSMANN, D STARK et al. Zintl phases as thermoelectric materials: tuned transport properties of the compounds CaxYb1-xZn2Sb2. Advanced Functional Materials, 15, 1860-1864(2005).

    [33] J MAO, S KIM H, J SHUAI et al. Thermoelectric properties of materials near the band crossing line in Mg2Sn-Mg2Ge-Mg2Si system. Acta Materialia, 103, 633-642(2016).

    [34] W LIU, X TAN, K YIN et al. Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si1-xSnx solid solutions. Physical Review Letters, 108, 166601(2012).

    [35] S BANERJEE, V RAMAKRISHNAN T, C DASGUPTA. Phenomenological Ginzburg-Landau-like theory for superconductivity in the cuprates. Physical Review B, 83, 024510(2011).

    [36] W LIU, C LUKAS K, K MCENANEY et al. Studies on the Bi2Te3-Bi2Se3-Bi2S3 system for mid-temperature thermoelectric energy conversion. Energy & Environmental Science, 6, 552-560(2013).

    [37] A YAMINI S, H WANG, M GIBBS Z et al. Chemical composition tuning in quaternary p-type Pb-chalcogenides—a promising strategy for enhanced thermoelectric performance. Physical Chemistry Chemical Physics, 16, 1835-1840(2014).

    [38] J KORKOSZ R, C CHASAPIS T, H LO S et al. High ZT in p-type (PbTe)1-2x(PbSe)x(PbS)x thermoelectric materials. Journal of the American Chemical Society, 136, 3225-3237(2014).

    [39] L HU, Y ZHANG, H WU et al. Entropy engineering of SnTe: multi-principal-element alloying leading to ultralow lattice thermal conductivity and state-of-the-art thermoelectric performance. Advanced Energy Materials, 8, 1802116(2018).

    [40] Y ZHAO S, R CHEN, Q LI J et al. Synergistic effects on thermoelectric properties of Sn0.5Ge0.4875Te with Pb alloying. Journal of Alloys and Compounds, 777, 1334-1339(2019).

    [41] M POSFAI, R BUSECK P. Djurleite, digenite, and chalcocite: intergrowths and transformations. American Mineralogist, 79, 308-315(1994).

    [42] L GULAY, M DASZKIEWICZ, O STROK et al. Crystal structure of Cu2Se. Chemistry of Metals and Alloys, 4, 200-205(2011).

    [43] A PASHINKIN, V FEDOROV. Phase equilibria in the Cu-Te system. Inorganic Materials, 39, 539-554(2003).

    [44] Y HE, P LU, X SHI et al. Ultrahigh thermoelectric performance in mosaic crystals. Advanced Materials, 27, 3639-3644(2015).

    [45] K ZHAO, P QIU, Q SONG et al. Ultrahigh thermoelectric performance in Cu2-ySe0.5S0.5 liquid-like materials. Materials Today Physics, 1, 14-23(2017).

    [46] K ZHAO, C ZHU, P QIU et al. High thermoelectric performance and low thermal conductivity in Cu2-yS1/3Se1/3Te1/3 liquid-like materials with nanoscale mosaic structures. Nano Energy, 42, 43-50(2017).

    [47] S WELDERT K, G ZEIER W, W DAY T et al. Thermoelectric transport in Cu7PSe6 with high copper ionic mobility. Journal of the American Chemical Society, 136, 12035-12040(2014).

    [48] R CHEN, P QIU, B JIANG et al. Significantly optimized thermoelectric properties in high-symmetry cubic Cu7PSe6 compounds via entropy engineering. Journal of Materials Chemistry A, 6, 6493-6502(2018).

    [49] B JIANG, P QIU, H CHEN et al. Entropy optimized phase transitions and improved thermoelectric performance in n-type liquid-like Ag9GaSe6 materials. Materials Today Physics, 5, 20-28(2018).

    [50] B JIANG, P QIU, H CHEN et al. An argyrodite-type Ag9GaSe6 liquid-like material with ultralow thermal conductivity and high thermoelectric performance. Chemical Communications, 53, 11658-11661(2017).

    [51] Y PEI, A LALONDE, S IWANAGA et al. High thermoelectric figure of merit in heavy hole dominated PbTe. Energy & Environmental Science, 4, 2085-2089(2011).

    [52] J LI, X ZHANG, Z CHEN et al. Low-symmetry rhombohedral GeTe thermoelectrics. Joule, 2, 976-987(2018).

    [53] D ZHAO L, H LO S, Y ZHANG et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature, 508, 373-377(2014).

    [54] Z FAN, H WANG, Y WU et al. Thermoelectric performance of PbSnTeSe high-entropy alloys. Materials Research Letters, 5, 187-194(2017).

    [55] Y WU, P NAN, Z CHEN et al. Manipulation of band degeneracy and lattice strain for extraordinary PbTe thermoelectrics. Research, 2020, 8151059(2020).

    [56] S RAOUX, B MUñOZ, H Y CHENG et al. Phase transitions in Ge-Te phase change materials studied by time-resolved X-ray diffraction. Applied Physics Letters, 95, 143118(2009).

    [57] S ALPTEKIN. Structural phase transition of SnSe under uniaxial stress and hydrostatic pressure: an ab initio study. Journal of Molecular Modeling, 17, 2989-2994(2011).

    [58] A MUIR J, V BEATO. Phase transformations in the system GeSe- GeTe. Journal of the Less Common Metals, 33, 333-340(1973).

    [59] H WIEDEMEIER, P SIEMERS. The thermal expansion and high temperature transformation of GeSe. Zeitschrift für Anorganische und Allgemeine Chemie, 411, 90-96(1975).

    [60] M SIST, C GATTI, P NØRBY et al. High-temperature crystal structure and chemical bonding in thermoelectric germanium selenide (GeSe). Chemistry-A European Journal, 23, 6888-6895(2017).

    [61] Z HUANG, A MILLER S, B GE et al. High thermoelectric performance of new rhombohedral phase of GeSe stabilized through alloying with AgSbSe2. Angewandte Chemie International Edition, 129, 14301-14306(2017).

    [62] Y QIU, Y JIN, D WANG et al. Realizing high thermoelectric performance in GeTe through decreasing the phase transition temperature via entropy engineering. Journal of Materials Chemistry A, 7, 26393-26401(2019).

    [63] Z ZHANG R, F GUCCI, H ZHU et al. Data-driven design of ecofriendly thermoelectric high-entropy sulfides. Inorganic Chemistry, 57, 13027-13033(2018).

    [64] Z FAN, H WANG, Y WU et al. Thermoelectric high-entropy alloys with low lattice thermal conductivity. RSC Advances, 6, 52164-52170(2016).

    [65] A RAPHEL, P VIVEKANANDHAN, S KUMARAN. High entropy phenomena induced low thermal conductivity in BiSbTe1.5Se1.5 thermoelectric alloy through mechanical alloying and spark plasma sintering. Materials Letters, 269, 127672(2020).

    [66] J YAN, F LIU, G MA et al. Suppression of the lattice thermal conductivity in NbFeSb-based half-Heusler thermoelectric materials through high entropy effects. Scripta Materialia, 157, 129-134(2018).

    [67] S SAKURADA, N SHUTOH. Effect of Ti substitution on the thermoelectric properties of (Zr,Hf)NiSn half-Heusler compounds. Applied Physics Letters, 86, 082105(2005).

    [68] A VOLYKHOV, L YASHINA, M TAMM et al. Phase equilibria in ternary reciprocal systems based on IV-VI compounds. Inorganic Materials, 45, 968-974(2009).

    [69] Y WANG Y, S ROGADO N, J CAVA R et al. Spin entropy as the likely source of enhanced thermopower in NaxCo2O4. Nature, 423, 425-428(2003).

    [70] D EMIN. Enhanced Seebeck coefficient from carrier-induced vibrational softening. Physical Review B, 59, 6205-6210(1999).

    [71] G HAN C, X QIAN, K LI Q et al. Giant thermopower of ionic gelatin near room temperature. Science, 368, 1091-1098(2020).

    Qingyu YANG, Pengfei QIU, Xun SHI, Lidong CHEN. Application of Entropy Engineering in Thermoelectrics[J]. Journal of Inorganic Materials, 2021, 36(4): 347
    Download Citation