• Journal of the European Optical Society-Rapid Publications
  • Vol. 19, Issue 2, 2023040 (2023)
Ling Fu1、* and Dingshan Gao2
Author Affiliations
  • 1School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2Wuhan National Laboratory for Optoelectronics & School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
  • show less
    DOI: 10.1051/jeos/2023040 Cite this Article
    Ling Fu, Dingshan Gao. Research on highly dynamic 3D measurement method based on RGB color fringe projection[J]. Journal of the European Optical Society-Rapid Publications, 2023, 19(2): 2023040 Copy Citation Text show less
    References

    [1] X. Liu, X. Peng, H. Chen et al. Strategy for automatic and complete three-dimensional optical digitization. Opt. Lett., 37, 3126-8(2012).

    [2] P. Zhang, K. Zhong, L. Zhongwei et al. High dynamic range 3D measurement based on structured light: a review. Journal of Advanced Manufacturing Science and Technology, 1, 2021004–1–9(2021).

    [3] B. Salahieh, Z. Chen, J.J. Rodriguez et al. Multi-polarization fringe projection imaging for high dynamic range objects. Optics Express, 22, 10064-10071(2014).

    [4] V. Suresh, Y. Wang, B. Li. High-dynamic-range 3D shape measurement utilizing the transitioning state of digital micromirror device. Optics and Lasers in Engineering, 107, 176-181(2018).

    [5] S. Zhang, S.-T. Yau. High dynamic range scanning technique [J]. Optical Engineering, 48, 033604-7(2009).

    [6] Y. Liu, Y. Fu, X. Cai et al. A novel high dynamic range 3D measurement method based on adaptive fringe projection technique. Optics and Lasers in Engineering, 128, 106004(2020).

    [7] Y. Liu, Y. Fu, Y. Zhuan et al. High dynamic range real-time 3D measurement based on Fourier transform profilometry. Optics & Laser Technology, 138, 106833(2021).

    [8] S. Feng, Y. Zhang, Q. Chen et al. General solution for high dynamic range three dimensional shape measurement using the fringe projection technique. Optics and Lasers in Engineering, 59, 56-71(2014).

    [9] H. Jiang, H. Zhao, X. Li. High dynamic range fringe acquisition: a novel 3-D scanning technique for high-reflective surfaces. Optics and Lasers in Engineering, 50, 1484-1493(2012).

    [10] S. Zhang. Rapid and automatic optimal exposure control for digital fringe projection technique. Opt. Lasers Eng., 128, 106029(2020).

    [11] C. Zhang, J. Xu, N. Xi et al. A robust surface coding method for optically challenging objects using structured light. IEEE Trans. Autom. Sci. Eng., 11, 775-788(2014).

    [12] C. Waddington, J. Kofman. Analysis of measurement sensitivity to illuminance and fringe-pattern gray levels for fringe-pattern projection adaptive to ambient lighting. Opt. Lasers Eng., 48, 251-6(2010).

    [13] D. Li, J. Kofman. Adaptive fringe-pattern projection for image saturation avoidance in 3D surface-shape measurement. Opt Express, 22, 9887-901(2014).

    [14] Z. Qi, Z. Wang, J. Huang et al. Highlight removal based on the regional-projection fringe projection method. Opt. Eng., 57, 041404(2018).

    [15] H. Lin, J. Gao, Q. Mei et al. Adaptive digital fringe projection technique for high dynamic range three-dimensional shape measurement. Opt. Exp., 24, 7703-18(2016).

    [16] C. Chen, N. Gao, X. Wang et al. Adaptive projection intensity adjustment for avoiding saturation in three-dimensional shape measurement. Opt. Commun., 410, 694-702(2018).

    [17] C. Chen, N. Gao, X. Wang et al. Adaptive pixel-to-pixel projection intensity adjustment for measuring a shiny surface using orthogonal color fringe pattern projection. Meas. Sci. Technol., 29, 055203(2018).

    [18] B. Wei, F. Yanjun, Z. Kejun et al. Rapid 3D measurement of colour objects based on three-channel sinusoidal fringe projection. J. Mod. Opt., 69, 741-749(2022).

    [19] Z. Zhang, C.E. Towers, D.P. Towers. Time efficient color fringe projection system for 3D shape and color using optimum 3-frequency selection. Opt. Exp., 14, 6444-6455(2006).

    [20] Q. Zhu, H. Zhao, C. Zhang et al. Point-to-point coupling and imbalance correction in color fringe projection profilometry based on multi-confusion matrix. Measurement Science and Technology, 32, 115202(2021).

    [21] K. Sakashita, Y. Yagi, R. Sagawa et al. A system for capturing textured 3D shapes based on one-shot grid pattern with multi-band camera and infrared projector, 49-56(2011).

    [22] H. Lin, J. Gao, Q. Mei et al. Three-dimensional shape measurement technique for shiny surfaces by adaptive pixel-wise projection intensity adjustment. Opt. Lasers Eng., 91, 206-15(2017).

    [23] G. Babaie, M. Abolbashari, F. Farahi. Dynamics range enhancement in digital fringe projection technique. Precis. Eng., 39, 243-51(2015).

    [24] H. Lin, J. Gao, Q. Mei et al. Adaptive digital fringe projection technique for high dynamic range three-dimensional shape measurement. Opt. Exp., 24, 7703-7718(2016).

    [25] C. Zuo, T. Tao, S. Feng et al. Micro Fourier transform profilometry (μFTP): 3D shape measurement at 10,000 frames per second. Opt. Lasers Eng., 102, 70-91(2018).

    Ling Fu, Dingshan Gao. Research on highly dynamic 3D measurement method based on RGB color fringe projection[J]. Journal of the European Optical Society-Rapid Publications, 2023, 19(2): 2023040
    Download Citation