• Advanced Photonics
  • Vol. 1, Issue 1, 014002 (2019)
Cun-Zheng Ning1、2、3、*
Author Affiliations
  • 1Tsinghua University, Department of Electronic Engineering, Beijing, China
  • 2Tsinghua University, International Center for Nano-Optoelectronics, Beijing, China
  • 3Arizona State University, School of Electrical, Computer, and Energy Engineering, Tempe, Arizona, United States
  • show less
    DOI: 10.1117/1.AP.1.1.014002 Cite this Article Set citation alerts
    Cun-Zheng Ning. Semiconductor nanolasers and the size-energy-efficiency challenge: a review[J]. Advanced Photonics, 2019, 1(1): 014002 Copy Citation Text show less
    References

    [1] D. A. B. Miller. Device requirements for optical interconnects to silicon chips. Proc. IEEE, 97, 1166-1185(2009).

    [2] C. Z. Ning, L. T. Dou, P. D. Yang. Nanoscale bandgap engineering: semiconductor alloy nanomaterials with widely tunable compositions. Nat. Rev. Mater., 2, 17070(2017).

    [3] C. Z. Ning. Semiconductor nanolasers (Tutorial). Phys. Status Solidi B, 247, 774-788(2010).

    [4] C. Z. Ning, J. J. Coleman, A. C. Bryce, C. Jagadish. Semiconductor nanowire lasers. Semiconductors and Semimetals, 86, 455-486(2012).

    [5] Q. Zhang et al. High quality whispering gallery mode lasing from cesium lead halide perovskite nanoplatelets. Adv. Funct. Mater., 26, 6238-6245(2016).

    [6] D. Liang, J. E. Bowers. Recent progress in lasers on silicon. Nat. Photonics, 4, 511-517(2010).

    [7] K. Ohashi et al. On-chip optical interconnect. Proc. IEEE, 97, 1186-1198(2009).

    [8] Z. Wang et al. Novel light source integration approaches for silicon photonics. Laser Photonics Rev., 11, 1700063(2017).

    [9] D. Liang et al. Heterogeneous silicon light sources for datacom applications. Opt. Fiber Technol., 44, 43-52(2018).

    [10] A. Y. Liu et al. High performance continuous wave 1.3  μm quantum dot lasers on silicon. Appl. Phys. Lett., 104, 041104(2014). https://doi.org/10.1063/1.4863223

    [11] T. Wang et al. 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates. Opt. Express, 19, 11381-11386(2011). https://doi.org/10.1364/OE.19.011381

    [12] S. Chen et al. Electrically pumped long lifetime continuous-wave III-V quantum-dot lasers directly grown on silicon substrates. Nat. Photonics, 10, 307-311(2016).

    [13] R. Chen et al. Nanolasers grown on silicon. Nat. Photonics, 5, 170-175(2011).

    [14] A. T. Martensson et al. Epitaxial III-V nanowires on silicon. Nano Lett., 4, 1987-1990(2004).

    [15] K. Tomioka, M. Yoshimura, T. Fukui. A III–V nanowire channel on silicon for high-performance vertical transistors. Nature, 488, 189-192(2012).

    [16] M. Borg et al. Vertical III-V nanowire device integration on Si(100). Nano Lett., 14, 1914-1920(2014).

    [17] Y. Cohin et al. Growth of vertical GaAs nanowires on an amorphous substrate via a fiber-textured Si platform. Nano Lett., 13, 2743-2747(2013).

    [18] B. Mayer et al. Monolithically integrated high-β nanowire lasers on silicon. Nano Lett., 16, 152-156(2016).

    [19] F. Schuster et al. Site-controlled growth of monolithic InGaAs/InP quantum well nanopillar lasers on silicon. Nano Lett., 17, 2697-2702(2017).

    [20] H. Kim et al. Monolithically integrated InGaAs nanowires on 3D structured silicon-on-insulator as a new platform for full optical links. Nano Lett., 16, 1833-1839(2016).

    [21] H. T. Nguyen et al. p-Type modulation doped InGaN/GaN dot-in-a-wire white-light-emitting diodes monolithically grown on Si(111). Nano Lett., 11, 1919-1924(2011).

    [22] K. Ding et al. Modulation bandwidth and energy efficiency of metallic cavity semiconductor nanolasers with inclusion of noise effects. Laser Photonics Rev., 9, 488-497(2015).

    [23] A. Benner. Optical interconnect opportunities in supercomputers and high end computing, OTu2B.4(2012).

    [24] H. Soda et al. GaInAsP/InP surface emitting injection lasers. Jpn. J. Appl. Phys., 18, 2329-2330(1979).

    [25] P. Moser et al. 56 fJ dissipated energy per bit of oxide-confined 850 nm VCSELs operating at 25 Gbit/s. Electron. Lett., 48, 1292-1294(2012).

    [26] P. Moser et al. Energy efficient 40 Gbit/s transmission with 850 nm VCSELs at 108 fJ/bit dissipated heat. Electron. Lett., 49, 666-667(2013).

    [27] D. Bimberg, A. Larsson, A. Joel. Faster, more frugal, greener VCSELs. Compd. Semicond., 22, 34-39(2014).

    [28] S. L. McCall et al. Whispering-gallery mode microdisk lasers. Appt. Phys. Lett., 60, 289-291(1992).

    [29] R. E. Slusher et al. Threshold characteristics of semiconductor microdisk lasers. Appl. Phys. Lett., 63, 1310-1312(1993).

    [30] Y. Zhang et al. Photonic crystal disk lasers. Opt. Lett., 36, 2704-2706(2011).

    [31] Q. Zhang et al. Room-temperature near-infrared high-Q perovskite whispering gallery planar nanolasers. Nano Lett., 14, 5995-6001(2014).

    [32] O. Painter et al. Two-dimensional photonic band-gap defect mode laser. Science, 284, 1819-1821(1999).

    [33] M. Nomura et al. Room temperature continuous-wave lasing in photonic crystal nanocavity. Opt. Express, 14, 6308-6315(2006).

    [34] K. Nozaki, S. Kita, T. Baba. Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser. Opt. Express, 15, 7506-7514(2007).

    [35] H.-G. Park et al. Electrically driven single-cell photonic crystal laser. Science, 305, 1444-1447(2004).

    [36] H. Altug, D. Englund, J. Vuckovic. Ultrafast photonic crystal nanocavity laser. Nat. Phys., 2, 484-488(2006).

    [37] S. Matsuo et al. High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted. Nat. Photonics, 4, 648-654(2010).

    [38] K.-Y. Jeong et al. Electrically driven nanobeam laser. Nat. Commun., 4, 2822(2013).

    [39] E. Yablonovitch. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett., 58, 2059-2062(1987).

    [40] S. John. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett., 58, 2486-2489(1987).

    [41] A. V. Maslov, C. Z. Ning. Reflection of guided modes in a semiconductor nanowire laser. Appl. Phys. Lett., 83, 1237-1239(2003).

    [42] M. H. Huang et al. Room-temperature ultraviolet nanowire nanolasers. Science, 292, 1897-1899(2001).

    [43] J. C. Johnson et al. Single gallium nitride nanowire lasers. Nat. Mater., 1, 106-110(2002).

    [44] X. F. Duan et al. Single-nanowire electrically driven lasers. Nature, 421, 241-245(2003).

    [45] A. H. Chin. Near-infrared semiconductor subwavelength-wire lasers. Appl. Phys. Lett., 88, 163115(2006).

    [46] D. Saxena et al. Optically pumped room-temperature GaAs nanowire lasers. Nat. Photonics, 7, 963-968(2013).

    [47] B. Mayer et al. Lasing from individual GaAs-AlGaAs core-shell nanowires up to room temperature. Nat. Commun., 4, 2931(2013).

    [48] S. Eaton et al. Semiconductor nanowire lasers. Nat. Rev. Mater., 1, 16028(2016).

    [49] C. Z. Ning, A. Pelster, G. Wunner. Nanolasers: current status of the trailblazer of synergetics. Self-Organization in Complex Systems: The Past, Present, and Future of Synergetics, 109-128(2016).

    [50] C. Couteau et al. Nanowire lasers. Nanophotonics, 4, 90-107(2015).

    [51] M. A Zimmler et al. Optically pumped nanowire lasers. Semicond. Sci. Technol., 25, 024001(2010).

    [52] R. Yan, D. Gargas, P. D. Yang. Nanowire photonics. Nat. Photonics, 3, 569-576(2009).

    [53] Y. Ma et al. Semiconductor nanowire lasers. Adv. Opt. Photonics, 5, 216-273(2013).

    [54] K. Ding, C. Z. Ning. Metallic subwavelength-cavity semiconductor nanolaser. Light Sci. Appl., 1, e20(2012).

    [55] Y. Ye et al. Monolayer excitonic laser. Nat. Photonics, 9, 733-737(2015).

    [56] S. Wu et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature, 520, 69-72(2015).

    [57] Y. Li et al. Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity. Nat. Nanotechnol., 12, 987-992(2017).

    [58] X. Liu et al. Strong light-matter coupling in two-dimensional atomic crystals. Nat. Photonics, 9, 30-34(2015).

    [59] O. Salehzadeh et al. Optically pumped two-dimensional MoS2 lasers operating at room-temperature. Nano Lett., 15, 5302-5306(2015).

    [60] J. C. Reed et al. Wavelength tunable microdisk cavity light source with a chemically enhanced MoS2 emitter. Nano Lett., 15, 1967-1971(2015).

    [61] D. J. Bergman, M. I. Stockman. Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. Phys. Rev. Lett., 90, 027402(2003).

    [62] A. V. Maslov, C. Z. Ning. Size reduction of a semiconductor nanowire laser by using metal coating. Proc. SPIE, 6468, 646801(2007).

    [63] M. T. Hill et al. Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides. Opt. Express, 17, 11107-11112(2009).

    [64] M. A. Noginov et al. Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium. Opt. Express, 16, 1385-1392(2008).

    [65] R. F. Oulton et al. Plasmon lasers at deep subwavelength scale. Nature, 461, 629-632(2009).

    [66] M. P. Nezhad, K. Tetz, Y. Fainman. Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides. Opt. Express, 12, 4072-4079(2004).

    [67] S. Maier. Gain-assisted propagation of electromagnetic energy in subwavelength surface plasmon polariton gap waveguides. Opt. Commun., 258, 295-299(2006).

    [68] M. T. Hill et al. Lasing in metallic-coated nanocavities. Nat. Photonics, 1, 589-594(2007).

    [69] M. A. Noginov et al. Demonstration of a spaser-based nanolaser. Nature, 460, 1110-1112(2009).

    [70] N. I. Zheludev et al. Lasing spaser. Nat. Photonics, 2, 351-354(2008).

    [71] M. P. Nezhad et al. Room-temperature subwavelength metallo-dielectric lasers. Nat. Photonics, 4, 395-399(2010).

    [72] I. De Leon, P. Berini. Amplification of long-range surface plasmons by a dipolar gain medium. Nat. Photonics, 4, 382-387(2010).

    [73] Y. J. Lu et al. Pasmonic nanolaser using epitaxially grown silver film. Science, 337, 450-453(2012).

    [74] W. Zhu et al. Surface plasmon polariton laser based on a metallic trench Fabry-Perot resonator. Sci. Adv., 3, e1700909(2017).

    [75] M. J. Marell et al. Plasmonic distributed feedback lasers at telecommunications wavelengths. Opt. Express, 19, 15109-15118(2011).

    [76] E. K. Keshmarzi, R. Tait, P. Berini. Single-mode surface plasmon distributed feedback lasers. Nanoscale, 10, 5914-5922(2018).

    [77] K. Ding et al. Room temperature continuous wave lasing in deep-subwavelength metallic-cavities under electrical injection. Phys. Rev. B, 85, 041301(R)(2012).

    [78] K. Yu, A. Lakhani, M. C. Wu. Subwavelength metal-optic semiconductor nanopatch lasers. Opt. Express, 18, 8790-8799(2010).

    [79] R. Perahia et al. Suface-plasmon mode hybridization in subwavelength microdisk lasers. Appl. Phys. Lett., 95, 201114(2009).

    [80] S. H. Kwon et al. Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity. Nano Lett., 10, 3679-3683(2010).

    [81] M. Khajavikhan et al. Thresholdless nanoscale coaxial lasers. Nature, 482, 204-207(2012).

    [82] T. P. H. Sidiropoulos et al. Ultrafast plasmonic nanowire lasers near the surface plasmon frequency. Nat. Phys., 10, 870-876(2014).

    [83] K. Ding et al. Record performance of electrical injection subwavelength metallic-cavity semiconductor lasers at room temperature. Opt. Express, 21, 4728-4733(2013).

    [84] K. Ding, C. Z. Ning. Fabrication challenges of electrical injection metallic cavity semiconductor nanolasers. Semicond. Sci. Technol., 28, 124002(2013).

    [85] P. Ginzburg, A. V. Zayats. Linewidth enhancement in spasers and plasmonic nanolasers. Opt. Express, 21, 2147-2153(2013).

    [86] S. Gwo, C. K. Shih. Semiconductor plasmonic nanolasers: current status and perspectives. Rep. Prog. Phys., 79, 086501(2016).

    [87] R. Ma et al. Plasmon lasers: coherent light source at molecular scales. Laser Photonics Rev., 7, 1-21(2013).

    [88] Q. Gu, Y. Fainman. Semiconductor Nanolasers(2017).

    [89] M. T. Hill, M. C. Gather. Advances in small lasers. Nat. Photonics, 8, 908-918(2014).

    [90] M. I. Stockman. The spaser as a nanoscale quantum generator and ultrafast amplifier. J. Opt., 12, 024004(2010).

    [91] P. Berini, I. De Leon. Surface plasmon–polariton amplifiers and lasers. Nat. Photonics, 6, 16-24(2012).

    [92] D. Li, C. Z. Ning. Interplay of various loss mechanisms and ultimate size limit of a surface plasmon polariton semiconductor nanolaser. Opt. Express, 20, 16348-16357(2012).

    [93] E. K. Lau et al. Enhanced modulation bandwidth of nanocavity light emitting devices. Opt. Express, 17, 7790-7799(2009).

    [94] K. A. Shore. Modulation bandwidth of metal-clad semiconductor nanolasers with cavity-enhanced spontaneous emission. Electron. Lett., 46, 1688-1689(2010).

    [95] T. Suhr et al. Modulation response of nanoLEDs and nanolasers exploiting Purcell enhanced spontaneous emission. Opt. Express, 18, 11230-11241(2010).

    [96] C.-Y. A. Ni, S. L. Chuang. Theory of high-speed nanolasers and nanoLEDs. Opt. Express, 20, 16450-16470(2012).

    [97] D. B. Li, C. Z. Ning. Peculiar features of confinement factors in a metal-semiconductor waveguide. Appl. Phys. Lett., 96, 181109(2010).

    [98] D. Li, C. Z. Ning. Giant modal gain, amplified surface plasmon polariton propagation, and slowing down of energy velocity in a metal-semiconductor metal structure. Phys. Rev., B80, 153304(2009).

    [99] A. Chernikov et al. Population inversion and giant bandgap renormalization in atomically thin WS2 layers. Nat. Photonics, 9, 466-470(2015).

    [100] L. Meckbach, T. Stroucken, S. W. Koch. Giant excitation induced bandgap renormalization in TMDC monolayers. Appl. Phys. Lett., 112, 061104(2018).

    [101] F. Lohof et al. Prospects and limitations of transition-metal dichalcogenide laser gain materials.

    [102] Z. Wang. Excitonic complexes and optical gain in two-dimensional molybdenum ditelluride well below Mott transition.

    CLP Journals

    [1] Linpeng Gu, Liang Fang, Qingchen Yuan, Xuetao Gan, Hao Yang, Xutao Zhang, Juntao Li, Hanlin Fang, Vladislav Khayrudinov, Harri Lipsanen, Zhipei Sun, Jianlin Zhao. Nanowire-assisted microcavity in a photonic crystal waveguide and the enabled high-efficiency optical frequency conversions[J]. Photonics Research, 2020, 8(11): 1734

    [2] Meng Guo, Hongbo He, Kui Yi, Shuying Shao, Guohang Hu, Jianda Shao. Optical characteristics of ultrathin amorphous Ge films[J]. Chinese Optics Letters, 2020, 18(10): 103101

    [3] Antardipan Pal, Yong Zhang, Dennis D. Yau. Monolithic and single-functional-unit level integration of electronic and photonic elements: FET-LET hybrid 6T SRAM[J]. Photonics Research, 2021, 9(7): 1369

    [4] Zhiqiang Yang, Kang Du, Wending Zhang, Soojin Chua, Ting Mei. A polarization-insensitive fishnet/spacer/mirror plasmonic absorber for hot electron photodetection application[J]. Chinese Optics Letters, 2020, 18(5): 052402

    [5] Zhe Zhang, Leona Nest, Suo Wang, Si-Yi Wang, Ren-Min Ma. Lasing-enhanced surface plasmon resonance spectroscopy and sensing[J]. Photonics Research, 2021, 9(9): 1699

    [6] Xiao-Cong (Larry) Yuan, Anatoly Zayats. Laser: sixty years of advancement[J]. Advanced Photonics, 2020, 2(5): 050101

    Cun-Zheng Ning. Semiconductor nanolasers and the size-energy-efficiency challenge: a review[J]. Advanced Photonics, 2019, 1(1): 014002
    Download Citation