• Chinese Journal of Lasers
  • Vol. 47, Issue 12, 1204002 (2020)
Zhou Weihang1、2, Ye Qing1、2, Ye Lei1, Li Xuan1, Zeng Chaozhi3, Huang Chun3, Cai Haiwen1、2, and Qu Ronghui1、2
Author Affiliations
  • 1Key Laboratory of Space Laser Communication and Detection Technology, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2Centre of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
  • show less
    DOI: 10.3788/CJL202047.1204002 Cite this Article Set citation alerts
    Zhou Weihang, Ye Qing, Ye Lei, Li Xuan, Zeng Chaozhi, Huang Chun, Cai Haiwen, Qu Ronghui. Distributed Optical Fiber In-Situ Monitoring Technology for a Healthy Temperature Field in Lithium Ion Batteries[J]. Chinese Journal of Lasers, 2020, 47(12): 1204002 Copy Citation Text show less

    Abstract

    Here, a distributed optical fiber temperature sensor is embedded in a lithium-ion battery to realize real-time distributed in-situ monitoring of the temperature field in the battery and the evaluating and forewarning of its operating health. The distribution state and evolution of the temperature field in lithium-ion batteries under different operating environments are analyzed theoretically according to the structure design model of the batteries. Accordingly, the characteristic temperature points (positive taps, negative taps, and center point) are selected to optimize the layout location of sensors for the accurate measurement of the temperature field and the optimization of the cost performance. Hence, the number of sensors used, the difficulty of the layout process and the cost of demodulation equipment can be reduced. Distributed cascaded fiber Bragg grating temperature sensors are employed in the experiment. The experimental results show that the temperature of each characteristic point slowly increases with the ambient temperature, while the central temperature point exhibits a rapid temperature increase, which are consistent with the theoretical results. The proposed method provides a technical reference and an implementation scheme for the in-situ monitoring of the health status of the integrated components of large-scale lithium-ion batteries in the future.
    Zhou Weihang, Ye Qing, Ye Lei, Li Xuan, Zeng Chaozhi, Huang Chun, Cai Haiwen, Qu Ronghui. Distributed Optical Fiber In-Situ Monitoring Technology for a Healthy Temperature Field in Lithium Ion Batteries[J]. Chinese Journal of Lasers, 2020, 47(12): 1204002
    Download Citation