• Laser & Optoelectronics Progress
  • Vol. 59, Issue 17, 1716006 (2022)
Taiqi Yan, Bingqing Chen*, Jiayu Liang, Bingbing Sun, and Shaoqing Guo
Author Affiliations
  • D Printing Research and Engineering Technology Center, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
  • show less
    DOI: 10.3788/LOP202259.1716006 Cite this Article Set citation alerts
    Taiqi Yan, Bingqing Chen, Jiayu Liang, Bingbing Sun, Shaoqing Guo. Quality Optimization of TC4 Alloy Fabrication via Selective Laser Melting[J]. Laser & Optoelectronics Progress, 2022, 59(17): 1716006 Copy Citation Text show less
    References

    [1] Huang W D. Research progress of material 3D printing technology[J]. The Journal of New Industrialization, 6, 53-70(2016).

    [2] Gu D D, Zhang H M, Chen H Y et al. Laser additive manufacturing of high-performance metallic aerospace components[J]. Chinese Journal of Lasers, 47, 0500002(2020).

    [3] Li S C, Mo B, Xiao G et al. Microstructure characteristics and their influence factors during laser additive manufacturing of metal materials[J]. Laser & Optoelectronics Progress, 58, 0100007(2021).

    [4] Liu W, Li N, Zhou B et al. Progress in additive manufacturing on complex structures and high-performance materials[J]. Journal of Mechanical Engineering, 55, 128-151, 159(2019).

    [5] Lilly A. Current status of titanium alloys for aircrafts application[R](2013).

    [6] Shan Q B, Liu C, Yao J et al. Effects of scanning strategy on the microstructure, properties, and residual stress of TC4 titanium alloy prepared by laser melting deposition[J]. Laser & Optoelectronics Progress, 58, 1114002(2021).

    [7] Meng Q L, Guan S M, Li Z. The Current status and development of the world aerospace titanium market[J]. Titanium Industry Progress, 28, 1-3(2011).

    [8] Zhao Z G, Bai L, Li L et al. Status and progress of selective laser melting forming technology[J]. Aeronautical Manufacturing Technology, 57, 46-49(2014).

    [9] Li J F, Wei Z Y, Lu B H. Research progress on technology of selective laser melting of titanium and titanium alloys[J]. Laser & Optoelectronics Progress, 55, 011403(2018).

    [10] Wang P Q, Wang Y Y, Wu M J et al. Effects of heat treatment on microstructure, mechanical properties, and anisotropy of laser melting deposited TC4[J]. Chinese Journal of Lasers, 48, 1002116(2021).

    [11] Herzog D, Seyda V, Wycisk E et al. Additive manufacturing of metals[J]. Acta Materialia, 117, 371-392(2016).

    [12] Li N, Huang S, Zhang G D et al. Progress in additive manufacturing on new materials: a review[J]. Journal of Materials Science & Technology, 35, 242-269(2019).

    [13] Kobayashi S, Nakagawa S, Nakai K et al. Phase decomposition in a Ti-13Nb-13Zr alloy during aging at 600 ℃[J]. Materials Transactions, 43, 2956-2963(2002).

    [14] He W, Du X P, Ma H Z et al. Measurement and analysis of phase transformation temperature of TC4 titanium alloy[J]. Physical Testing and Chemical Analysis (Part A: Physical Testing), 50, 461-464(2014).

    [15] Shen Y Z. The formation and development of dislocation theory[J]. Metal World, 10-11(1995).

    Taiqi Yan, Bingqing Chen, Jiayu Liang, Bingbing Sun, Shaoqing Guo. Quality Optimization of TC4 Alloy Fabrication via Selective Laser Melting[J]. Laser & Optoelectronics Progress, 2022, 59(17): 1716006
    Download Citation