• Journal of Inorganic Materials
  • Vol. 38, Issue 4, 445 (2023)
Jingyu WANG1, Changjin WAN1, and Qing WAN1,2,*
Author Affiliations
  • 11. School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
  • 22. School of Micro-Nano Electronics, Zhejiang University, Hangzhou 310027, China
  • show less
    DOI: 10.15541/jim20220767 Cite this Article
    Jingyu WANG, Changjin WAN, Qing WAN. Dual-gate IGZO-based Neuromorphic Transistors with Stacked Al2O3/Chitosan Gate Dielectrics [J]. Journal of Inorganic Materials, 2023, 38(4): 445 Copy Citation Text show less
    References

    [1] K ROY, A JAISWAL, P PANDA. Towards spike-based machine intelligence with neuromorphic computing. Nature, 607(2019).

    [2] S YU. Neuro-inspired computing with emerging nonvolatile memorys. Proceedings of the IEEE, 260(2018).

    [3] M PREZIOSO, F MERRIKH-BAYAT, B D HOSKINS et al. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature, 61(2015).

    [4] Y ZHU, Y ZHU, H MAO et al. Recent advances in emerging neuromorphic computing and perception devices. Journal of Physics D: Applied Physics, 053002(2021).

    [5] Z YOU, S RAMANATHAN. Mott memory and neuromorphic devices. Proceedings of the IEEE, 1289(2015).

    [6] J WANG, Y LI, C YIN et al. Long-term depression mimicked in an IGZO-based synaptic transistor. IEEE Electron Device Letters, 191(2017).

    [7] Y J PARK, H T KWON, B KIM et al. 3-D stacked synapse array based on charge-trap flash memory for implementation of deep neural networks. IEEE Transactions on Electron Devices(2019).

    [8] W YAN, A PAGE, T NGUYEN-DANG et al. Advanced multimaterial electronic and optoelectronic fibers and textiles. Advanced Materials, e1802348(2019).

    [9] W YAN, Y QU, T D GUPTA et al. Semiconducting nanowire-based optoelectronic fibers. Advanced Materials, 1700681(2017).

    [10] P GKOUPIDENIS, D A KOUTSOURAS, T LONJARET et al. Orientation selectivity in a multi-gated organic electrochemical transistor. Scientific Reports, 6: 27007(2016).

    [11] M K KIM, J S LEE. Ferroelectric analog synaptic transistors. Nano Letters, 2044(2019).

    [12] Y ZHU, H MAO, Y ZHU et al. Photoelectric synapse based on InGaZnO nanofibers for high precision neuromorphic computing. IEEE Electron Device Letters(2022).

    [13] H MAO, Y HE, C CHEN et al. A spiking stochastic neuron based on stacked InGaZnO memristors. Advanced Electronic Materials, 2100918(2021).

    [14] J JIANG, Q WAN, J SUN et al. Ultralow-voltage transparent electric-double-layer thin-film transistors processed at room-temperature. Applied Physics Letters, 152114(2009).

    [15] DE BURGT Y VAN, A MELIANAS, S T KEENE et al. Organic electronics for neuromorphic computing. Nature Electronics, 386(2018).

    [16] Y HE, Y YANG, S NIE et al. Electric-double-layer transistors for synaptic devices and neuromorphic systems. Journal of Materials Chemistry C, 5336(2018).

    [17] Y HE, S NIE, R LIU et al. Dual-functional long-term plasticity emulated in IGZO-based photoelectric neuromorphic transistors. IEEE Electron Device Letters, 818(2019).

    [18] J KIM, Y KIM, O KWON et al. Modulation of synaptic plasticity mimicked in Al nanoparticle-embedded IGZO synaptic transistor. Advanced Electronic Materials, 1901072(2020).

    [19] Y ZHU, Y HE, S JIANG et al. Indium-gallium-zinc-oxide thin-film transistors: materials, devices, and applications. Journal of Semiconductors, 031101(2021).

    [20] Y JANG, J PARK, J KANG et al. Amorphous InGaZnO (a-IGZO) synaptic transistor for neuromorphic computing. ACS Applied Electronic Materials, 1427(2022).

    [21] DE BURGT Y VAN, E LUBBERMAN, E J FULLER et al. A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nature Materials, 414(2017).

    [22] D KUZUM, R G JEYASINGH, B LEE et al. Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. Nano Letters, 2179(2012).

    [23] C KIM, A FACCHETTI, T J MARKS. Gate dielectric microstructural control of pentacene film growth mode and field-effect transistor performance. Advanced Materials, 2561(2007).

    [24] B WANG, W HUANG, L CHI et al. High-k gate dielectrics for emerging flexible and stretchable electronics. Chemical Reviews, 5690(2018).

    [25] J ZHOU, Y LIU, Y SHI et al. Solution-processed chitosan-gated IZO-based transistors for mimicking synaptic plasticity. IEEE Electron Device Letters, 280(2014).

    [26] S GAO, Q ZHOU, X LIU et al. Breakdown enhancement and current collapse suppression in AlGaN/GaN HEMT by NiOX/ SiNX and Al2O3/SiNX as gate dielectric layer and passivation layer. IEEE Electron Device Letters, 1921(2019).

    [27] W WEI, Z ZENG, W LIAO et al. Extended gate ion-sensitive field-effect transistors using Al2O3/hexagonal boron nitride nanolayers for ph sensing. ACS Applied Nano Materials, 403(2019).

    [28] G PALASANTZAS, J D HOSSON, J BARNAS. Surface/ interface roughness effects on magneto-electrical properties of thin films. Surface Science, 507-510: 541(2002).

    [29] J LI, J WU, J LIU et al. Effect of composition, interface, and deposition sequence on electrical properties of nanolayered Ta2O5-Al2O3 films grown on silicon by atomic layer deposition. Nanoscale Research Letters, 75(2019).

    [30] M CHOE, G JO, J MAENG et al. Electrical properties of ZnO nanowire field effect transistors with varying high-k Al2O3 dielectric thickness. Journal of Applied Physics, 034504(2010).

    [31] E FORTUNATO, P BARQUINHA, R MARTINS. Oxide semiconductor thin-film transistors: a review of recent advances. Advanced Materials(2012).

    [32] L Q ZHU, J Y CHAO, H XIAO et al. Chitosan-based electrolyte gated low voltage oxide transistor with a coplanar modulatory terminal. IEEE Electron Device Letters, 322(2017).

    [33] X WAN, Y HE, S NIE et al. Biological band-pass filtering emulated by oxide-based neuromorphic transistors. IEEE Electron Device Letters, 1764(2018).

    [34] S NIE, Y HE, R LIU et al. Low-voltage oxide-based synaptic transistors for spiking humidity detection. IEEE Electron Device Letters, 459(2019).

    [35] K KIM, C L CHEN, Q TRUONG et al. A carbon nanotube synapse with dynamic logic and learning. Advanced Materials(2013).

    [36] S JIANG, Y HE, R LIU et al. Synaptic metaplasticity emulation in a freestanding oxide-based neuromorphic transistor with dual in-plane gates. Journal of Physics D: Applied Physics, 185106(2021).

    [37] R LIU, Y HE, S JIANG et al. Synaptic plasticity and classical conditioning mimicked in single indium-tungsten-oxide based neuromorphic transistor. Chinese Physics B, 058102(2021).

    [38] C ZHANG, S LI, Y HE et al. Oxide synaptic transistors coupled with triboelectric nanogenerators for bio-inspired tactile sensing application. IEEE Electron Device Letters, 617(2020).

    [39] J T YANG, C GE, J Y DU et al. Artificial synapses emulated by an electrolyte-gated tungsten-oxide transistor. Advanced Materials, e1801548(2018).

    [40] M ZIEGLER, H KOHLSTEDT. Mimic synaptic behavior with a single floating gate transistor: a memflash synapse. Journal of Applied Physics, 194506(2013).

    Jingyu WANG, Changjin WAN, Qing WAN. Dual-gate IGZO-based Neuromorphic Transistors with Stacked Al2O3/Chitosan Gate Dielectrics [J]. Journal of Inorganic Materials, 2023, 38(4): 445
    Download Citation