• Photonics Research
  • Vol. 11, Issue 1, 72 (2023)
Yoon-Soo Jang1, Jungjae Park1、2, and Jonghan Jin1、2、*
Author Affiliations
  • 1Length Group, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
  • 2Major of Precision Measurement, University of Science and Technology, Daejeon 34113, Republic of Korea
  • show less
    DOI: 10.1364/PRJ.476251 Cite this Article Set citation alerts
    Yoon-Soo Jang, Jungjae Park, Jonghan Jin. Comb-mode resolved spectral domain interferometer enabled by a broadband electro-optic frequency comb[J]. Photonics Research, 2023, 11(1): 72 Copy Citation Text show less
    References

    [1] Y.-S. Jang, H. Liu, J. Yang, M. Yu, D.-L. Kwong, C. W. Wong. Nanometric precision distance metrology via hybrid spectrally resolved and homodyne interferometry in a single soliton frequency microcomb. Phys. Rev. Lett., 126, 023903(2021).

    [2] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto. Optical coherence tomography. Science, 254, 1178-1181(1991).

    [3] J. Park, J. Bae, Y.-S. Jang, J. Jin. A novel method for simultaneous measurement of thickness, refractive index, bow, and warp of a large silicon wafer using a spectral-domain interferometry. Metrologia, 57, 064001(2020).

    [4] G. Herink, F. Kurtz, B. Jalali, D. R. Solli, C. Ropers. Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules. Science, 356, 50-54(2017).

    [5] S. Maeng, J. Park, B. O, J. Jin. Uncertainty improvement of geometrical thickness and refractive index measurement of a silicon wafer using a femtosecond pulse laser. Opt. Express, 20, 12184-12190(2012).

    [6] J. Park, H. Mori, J. Jin. Simultaneous measurement method of the physical thickness and group refractive index free from a non-measurable range. Opt. Express, 27, 24682-24692(2019).

    [7] D. S. Shreesha Rao, M. Jensen, L. Gruner-Nielsen, J. T. Olsen, P. Heiduschka, B. Kemper, J. Schnekenburger, M. Glud, M. Mogensen, N. M. Israelsen, O. Bang. Shot-noise limited, supercontinuum-based optical coherence tomography. Light Sci. Appl., 10, 133(2021).

    [8] S. A. Diddams, K. Vahala, T. Udem. Optical frequency combs: coherently uniting the electromagnetic spectrum. Science, 369, eaay3676(2020).

    [9] Y.-S. Jang, S.-W. Kim. Distance measurements using mode-locked lasers: a review. Nanomanuf. Metrol., 1, 131-147(2018).

    [10] K. Minoshima, H. Matsumoto. High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser. Appl. Opt., 39, 5512-5517(2000).

    [11] N. R. Doloca, K. Meiners-Hagen, M. Wedde, F. Pollinger, A. Abou-Zeid. Absolute distance measurement system using a femtosecond laser as a modulator. Meas. Sci. Technol., 21, 115302(2010).

    [12] Y.-S. Jang, W. Kim, H. Jang, S.-W. Kim. Absolute distance meter operating on a free-running mode-locked laser for space mission. Int. J. Precis. Eng. Manuf., 19, 975-981(2018).

    [13] E. Baumann, F. R. Giorgetta, I. Coddington, L. C. Sinclair, K. Knabe, W. C. Swann, N. R. Newbury. Comb-calibrated frequency-modulated continuous-wave ladar for absolute distance measurements. Opt. Lett., 38, 2026-2028(2013).

    [14] J. Riemensberger, A. Lukashchuk, M. Karpov, W. Weng, E. Lucas, J. Liu, T. J. Kippenberg. Massively parallel coherent laser ranging using soliton microcombs. Nature, 581, 164-170(2020).

    [15] N. Schuhler, Y. Salvade, S. Levêque, R. Dändliker, R. Holzwarth. Frequency-comb-referenced two-wavelength source for absolute distance measurement. Opt. Lett., 31, 3101-3103(2006).

    [16] G. Wang, Y.-S. Jang, S. Hyun, B. J. Chun, H. J. Kang, S. Yan, S.-W. Kim, Y.-J. Kim. Absolute positioning by multi-wavelength interferometry referenced to the frequency comb of a femtosecond laser. Opt. Express, 23, 9121-9129(2015).

    [17] Y.-S. Jang, G. Wang, S. Hyun, H. J. Kang, B. J. Chun, Y.-J. Kim, S.-W. Kim. Comb-referenced laser distance interferometer for industrial nanotechnology. Sci. Rep., 6, 31770(2016).

    [18] I. Coddington, W. C. Swann, L. Nenadovic, N. R. Newbury. Rapid and precise absolute distance measurements at long range. Nat. Photonics, 3, 351-356(2009).

    [19] H. Zhang, H. Wei, X. Wu, H. Yang, Y. Li. Absolute distance measurement by dual-comb nonlinear asynchronous optical sampling. Opt. Express, 22, 6597-6604(2014).

    [20] Z. Zhu, G. Wu. Dual-comb ranging. Engineering, 4, 772-778(2018).

    [21] M.-G. Suh, K. J. Vahala. Soliton microcomb range measurement. Science, 359, 884-887(2018).

    [22] K.-N. Joo, S.-W. Kim. Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser. Opt. Express, 14, 5954-5960(2006).

    [23] S. A. van den Berg, S. T. Persijn, G. J. P. Kok, M. G. Zeitouny, N. Bhattacharya. Many-wavelength interferometry with thousands of lasers for absolute distance measurement. Phys. Rev. Lett., 108, 183901(2012).

    [24] J. Park, J. Jin, J.-A. Kim, J. W. Kim. Absolute distance measurement method without a non-measurable range and directional ambiguity based on the spectral-domain interferometer using the optical comb of the femtosecond pulse laser. Appl. Phys. Lett., 109, 244103(2016).

    [25] J. Wang, Z. Lu, W. Wang, F. Zhang, J. Chen, Y. Wang, J. Zheng, S. T. Chu, W. Zhao, B. E. Little, X. Qu, W. Zhang. Long-distance ranging with high precision using a soliton microcomb. Photon. Res., 8, 1964-1972(2020).

    [26] S. A. van den Berg, S. T. Persijn, N. Bhattacharya. Mode-resolved frequency comb interferometry for high-accuracy long distance measurement. Sci. Rep., 5, 14661(2015).

    [27] M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, H. P. Urbach. Long distance measurement with femtosecond pulses using a dispersive interferometer. Opt. Express, 19, 6549-6562(2011).

    [28] H. Wu, F. Zhang, F. Meng, T. Liu, J. Li, L. Pan, X. Qu. Absolute distance measurement in a combined-dispersive interferometer using a femtosecond pulse laser. Meas. Sci. Technol., 27, 015202(2016).

    [29] G. Tang, X. Qu, F. Zhang, X. Zhao, B. Peng. Absolute distance measurement based on spectral interferometry using femtosecond optical frequency comb. Opt. Laser Eng., 120, 71-78(2019).

    [30] A. Parriaux, K. Hammani, G. Millot. Electro-optic frequency combs. Adv. Opt. Photon., 12, 223-287(2020).

    [31] G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hansch, N. Picque. Frequency-agile dual-comb spectroscopy. Nat. Photonics, 10, 27-30(2016).

    [32] T. Ohara, H. Takara, T. Yamamoto, H. Masuda, T. Morioka, M. Abe, H. Takahashi. Over-1000-channel ultradense WDM transmission with supercontinuum multicarrier source. J. Lightwave Technol., 24, 2311-2317(2006).

    [33] V. Torress-Company, A. M. Weiner. Optical frequency comb technology for ultra-broadband radio-frequency photonics. Laser Photon. Rev., 8, 368-393(2014).

    [34] D. R. Carlson, D. D. Hickstein, W. Zhang, A. J. Metcalf, F. Quinlan, S. A. Diddams, S. B. Papp. Ultrafast electro-optic light with subcycle control. Science, 361, 1358-1363(2018).

    [35] H. Wu, T. Zhao, Z. Wang, K. Zhang, B. Xue, J. Li, M. He, X. Qu. Long distance measurement up to 1.2  km by electro-optic dual-comb interferometry. Appl. Phys. Lett., 111, 251901(2017).

    [36] X. Zhao, X. Qu, F. Zhang, Y. Zhao, G. Tang. Absolute distance measurement by multi-heterodyne interferometry using an electro-optic triple comb. Opt. Lett., 43, 807-810(2018).

    [37] A. J. Metcalf, V. Torres-Company, D. E. Leaird, A. M. Weiner. High-power broadly tunable electrooptic frequency comb generator. IEEE J. Sel. Top. Quantum. Electron., 19, 231-236(2013).

    [38] J. Yu, Z. Dong, J. Zhang, X. Xiao, H.-C. Chien, N. Chi. Generation of coherent and frequency-locked multi-carriers using cascaded phase modulators for 10  Tb/s optical transmission system. J. Lightwave Technol., 30, 458-465(2012).

    [39] R. Prakash, B. S. Vikram, K. P. Nagarjun, V. R. Supradeepa. Tailored optical feedback for bandwidth scaling and spectral equalization of high repetition rate electro-optic frequency combs. OSA Contin., 3, 3280-3288(2020).

    [40] S. Yang, X. Bao. Generating a high-extinction-ratio pulse from a phase-modulated optical signal with a dispersion-imbalanced nonlinear loop mirror. Opt. Lett., 31, 1032-1034(2006).

    [41] V. Ataie, E. Myslivets, B. P.-P. Kuo, N. Alic, S. Radic. Spectrally equalized frequency comb generation in multistage parametric mixer with nonlinear pulse shaping. J. Lightwave Technol., 32, 840-846(2014).

    [42] R. Wu, V. Torress-Company, D. E. Leaird, A. M. Weiner. Supercontinuum-based 10-GHz flat-topped optical frequency comb generation. Opt. Express, 21, 6045-6052(2013).

    [43] K. Beha, D. C. Cole, P. Del’Haye, A. Coillet, S. A. Diddams, S. B. Papp. Electronic synthesis of light. Optica, 4, 406-411(2017).

    [44] J. Jin, J. W. Kim, C.-S. Kang, J.-A. Kim, T. B. Eom. Thickness and refractive index measurement of a silicon wafer based on an optical comb. Opt. Express, 18, 18339-18346(2010).

    [45] J. Bae, J. Park, H. Ahn, J. Jin. Optical method for simultaneous thickness measurements of two layers with a significant thickness difference. Opt. Express, 29, 31615-31631(2021).

    [46] Y.-S. Jang, J. Park, J. Jin. Sub-100-nm precision distance measurement by means of all-fiber photonic microwave mixing. Opt. Express, 29, 12229-12239(2021).

    [47] Y.-S. Jang, J. Park, J. Jin. Periodic-error-free all-fiber distance measurement method with photonic microwave modulation towards on-chip based devices. IEEE Trans. Instrum. Meas., 71, 7000907(2022).

    [48] Y.-S. Jang, S.-W. Kim. Compensation of the refractive index of air in laser interferometer for distance measurement: a review. Int. J. Precis. Eng. Manuf., 18, 1881-1890(2017).

    [49] P. E. Ciddor. Refractive index of air: new equations for the visible and near infrared. Appl. Opt., 35, 1566-1573(1996).

    Yoon-Soo Jang, Jungjae Park, Jonghan Jin. Comb-mode resolved spectral domain interferometer enabled by a broadband electro-optic frequency comb[J]. Photonics Research, 2023, 11(1): 72
    Download Citation