• Acta Photonica Sinica
  • Vol. 51, Issue 7, 0751408 (2022)
An PAN1、2、*, Yuting GAO1、2, Aiye WANG1、2, Huiqin GAO1、2, Caiwen MA1、2, and Baoli YAO1、2
Author Affiliations
  • 1Xi'an Institute of Optics and Precision Mechanics,Chinese Academy of Sciences,Xi'an 710119,China
  • 2University of Chinese Academy of Sciences,Beijing 100094,China
  • show less
    DOI: 10.3788/gzxb20225107.0751408 Cite this Article
    An PAN, Yuting GAO, Aiye WANG, Huiqin GAO, Caiwen MA, Baoli YAO. High-throughput Full-color Fourier Ptychographic Microscopy for the Next Generation of Digital Pathologic Imager and Analyser(Invited)[J]. Acta Photonica Sinica, 2022, 51(7): 0751408 Copy Citation Text show less
    References

    [1] N FARAHANI, A PARWANI, L PANTANOWITZ. Whole slide imaging in pathology: advantages, limitations, and emerging perspectives. Pathology and Laboratory Medicine International, 7, 23-33(2015).

    [2] W S JAHN, M PLASS, F MOINFAR. Digital pathology: Advantages, limitations and emerging perspectives. Journal of Clinical Medicine, 9, 3697(2020).

    [3] G ZHENG, R HORSTMEYER, C YANG. Wide-field, high-resolution Fourier ptychographic microscopy. Nature Photonics, 7, 739-745(2013).

    [4] G ZHENG. Breakthroughs in photonics 2013: Fourier ptychographic imaging. IEEE Photonics Journal, 6, 1-7(2014).

    [5] Jiasong SUN, Yuzhen ZHANG, Qian CHEN et al. Fourier ptychographic microscopy: Theory, advances, and applications. Acta Optica Sinica, 36, 1011005(2016).

    [6] An PAN, Baoli YAO. High-throughput and fast-speed Fourier ptychographic microscopy. Infrared and Laser Engineering, 48, 603012(2019).

    [7] P C KONDA, L LOETGERING, K C ZHOU et al. Fourier ptychography: current applications and future promises. Optics Express, 28, 9603-9630(2020).

    [8] A PAN, C ZUO, B YAO. High-resolution and large field-of-view Fourier ptychographic microscopy and its applications in biomedicine. Reports on Progress in Physics, 83, 096101(2020).

    [9] G ZHENG, C SHEN, S JIANG et al. Concept, implementations and applications of Fourier ptychography. Nature Reviews Physics, 3, 207-223(2021).

    [10] Shaohui ZHANG, Guocheng ZHOU, Baiqi CUI et al. Review of Fourier ptychographic microscopy: Models, algorithms, and systems. Laser & Optoelectronics Progress, 58, 1400001(2021).

    [11] H M L FAULKNER, J M RODENBURG. Movable aperture lensless transmission microscopy: A novel phase retrieval algorithm. Physical Review Letters, 93, 023903(2004).

    [12] An PAN, Yan ZHANG, Tianyu ZHAO et al. Quantitative phase microscopy based on ptychography. Laser & Optoelectronics Progress, 54, 040001(2017).

    [13] An PAN, Xiaofei ZHANG, Bin WANG et al. Experimental study on three-dimensional ptychography for thick sample. Acta Physica Sinica, 65, 014204(2016).

    [14] An PAN, Dong WANG, Yishi SHI et al. Incoherent ptychography in Fresnel domain with simultaneous multi-wavelength illumination. Acta Physica Sinica, 65, 124201(2016).

    [15] V MICO, Z ZALEVSKY, P GARCÍA-MARTÍNEZ et al. Synthetic aperture superresolution with multiple off-axis holograms. Journal of the Optical Society of America A, 23, 3162-3170(2006).

    [16] J HOLLOWAY, Y WU, M K SHARMA et al. SAVI: Synthetic apertures for long-range, subdiffraction-limited visible imaging using Fourier ptychography. Science Advances, 3, e1602564(2017).

    [17] R W GERCHBERG, W O SAXTON. A practical algorithm for the determination of the phase from image and diffraction plane pictures. Optik, 35, 237-249(1972).

    [18] J R FIENUP. Phase retrieval algorithms: a comparison. Applied Optics, 21, 2758-2769(1982).

    [19] J W GOODMAN. Introduction to Fourier Optics (4th Ed)(2017).

    [20] J WU, Z LU, D JIANG et al. Iterative tomography with digital adaptive optics permits hour-long intravital observation of 3D subcellular dynamics at millisecond scale. Cell, 184, 1-15(2021).

    [21] Z BIAN, S DONG, G ZHENG. Adaptive system correction for robust Fourier ptychographic imaging. Optics Express, 21, 32400-32410(2013).

    [22] X OU, G ZHENG, C YANG. Embedded pupil function recovery for Fourier ptychographic microscopy. Optics Express, 22, 4960-4972(2014).

    [23] S DONG, Z BIAN, R SHIRADKAR et al. Sparsely sampled Fourier ptychography. Optics Express, 22, 5455-5464(2014).

    [24] K GUO, S DONG, P NANDA et al. Optimization of sampling pattern and the design of Fourier ptychographic illuminator. Optics Express, 23, 6171-6180(2015).

    [25] L-H YEH, J DONG, J ZHONG et al. Experimental robustness of Fourier ptychography phase retrieval algorithms. Optics Express, 23, 33214-33240(2015).

    [26] L BIAN, J SUO, G ZHENG et al. Fourier ptychographic reconstruction using Wirtinger flow optimization. Optics Express, 23, 4856-4866(2015).

    [27] Y ZHANG, W JIANG, Q DAI. Nonlinear optimization approach for Fourier ptychographic microscopy. Optics Express, 23, 33822-33835(2015).

    [28] L BIAN, J SUO, J CHUNG et al. Fourier ptychographic reconstruction using Poisson maximum likelihood and truncated Wirtinger gradient. Scientific Reports, 6, 27384(2016).

    [29] L BIAN, G ZHENG, K GUO et al. Motion-corrected Fourier ptychography. Biomedical Optics Express, 7, 4543-4553(2016).

    [30] J SUN, Q CHEN, Y ZHANG et al. Efficient positional misalignment correction method for Fourier ptychographic microscopy. Biomedical Optics Express, 7, 1336-1350(2016).

    [31] C ZUO, J SUN, Q CHEN. Adaptive step-size strategy for noise-robust Fourier ptychographic microscopy. Optics Express, 24, 20724-20744(2016).

    [32] Y ZHANG, A PAN, M LEI et al. Data preprocessing methods for robust Fourier ptychographic microscopy. Optical Engineering, 56, 123107(2017).

    [33] A PAN, Y ZHANG, T ZHAO et al. System calibration method for Fourier ptychographic microscopy. Journal of Biomedical Optics, 22, 096005(2017).

    [34] Y FAN, J SUN, Q CHEN et al. Adaptive denoising method for Fourier ptychographic microscopy. Optics Communications, 404, 23-31(2017).

    [35] A MAIDEN, D JOHNSON, P LI. Further improvements to the ptychographical iterative engine. Optica, 4, 736-745(2017).

    [36] A PAN, C ZUO, Y XIE et al. Vignetting effect in Fourier ptychographic microscopy. Optics and Lasers in Engineering, 120, 40-48(2019).

    [37] P SONG, S JIANG, H ZHANG et al. Full-field Fourier ptychography (FFP): spatially varying pupil modeling and its application for rapid field-dependent aberration metrology. APL Photonics, 4, 050802(2019).

    [38] A WANG, Z ZHANG, S WANG et al. Fourier Ptychographic Microscopy via Alternating Direction Method of Multipliers. Cells, 11, 1512(2022).

    [39] X OU, R HORSTMEYER, G ZHENG et al. High numerical aperture Fourier ptychography: principle, implementation and characterization. Optics Express, 23, 3472-3491(2015).

    [40] Z F PHILLIPS, M V D’AMBROSIO, T LEI et al. Multi-contrast imaging and digital refocusing on a mobile microscope with a domed LED array. PLoS One, 10, e0124938(2015).

    [41] Z F PHILLIPS, R ECKERT, L WALLER. Quasi-dome: A self-calibrated high-NA led illuminator for Fourier ptychography imaging systems and applications, IW4E.5(2017).

    [42] J SUN, C ZUO, L ZHANG et al. Resolution-enhanced Fourier ptychographic microscopy based on high-numerical-aperture illuminations. Scientific Reports, 7, 1187(2017).

    [43] A PAN, Y ZHANG, K WEN et al. Subwavelength resolution Fourier ptychography with hemispherical digital condensers. Optics Express, 26, 23119-23131(2018).

    [44] L BIAN, J SUO, G SITU et al. Content adaptive illumination for Fourier ptychography. Optics Letters, 39, 6648-6651(2014).

    [45] Y ZHANG, W JIANG, L TIAN et al. Self-learning based Fourier ptychographic microscopy. Optics Express, 23, 18471-18486(2015).

    [46] L TIAN, X LI, K RAMCHANDRAN et al. Multiplexed coded illumination for Fourier ptychography with an LED array microscope. Biomedical Optics Express, 5, 2376-2389(2014).

    [47] L TIAN, Z LIU, L H YEH et al. Computational illumination for high-speed in vitro Fourier ptychographic microscopy. Optica, 2, 904-911(2015).

    [48] X LIN, J WU, Q DAI et al. Camera array based light field microscopy. Biomedical Optics Express, 6, 3179-3189(2015).

    [49] T NGUYEN, Y XUE, Y LI et al. Deep learning approach for Fourier ptychography microscopy. Optics Express, 26, 26470-26484(2018).

    [50] Y XUE, S CHENG, Y LI et al. Reliable deep-learning-based phase imaging with uncertainty quantification. Optica, 6, 618-629(2019).

    [51] B LEE, J HONG, D YOO et al. Single-shot phase retrieval via Fourier ptychographic microscopy. Optica, 5, 976-983(2018).

    [52] X HE, C LIU, J ZHU. Single-shot Fourier ptychography based on diffractive beam splitting. Optics Letters, 43, 214-217(2018).

    [53] W LEE, D JUNG, S RYU et al. Single-exposure quantitative phase imaging in color-coded LED microscopy. Optics Express, 25, 8398-8411(2017).

    [54] Z F PHILLIPS, M CHEN, L WALLER. Single-shot quantitative phase microscopy with color-multiplexed differential phase contrast (cDPC). PloS One, 12, e0171228(2017).

    [55] J SUN, Q CHEN, J ZHANG et al. Single-shot quantitative phase microscopy based on color-multiplexed Fourier ptychography. Optics Letters, 43, 3365-3368(2018).

    [56] J SUN, C ZUO, J ZHANG et al. High-speed Fourier ptychographic microscopy based on programmable annular illuminations. Scientific Reports, 8, 7669(2018).

    [57] A PAN, C SHEN, B YAO et al. Single-shot Fourier ptychographic microscopy via annular monochrome LED array. Frontiers in Optics + Laser Science APS/DLS, FTh3F.4(2019).

    [58] P C KONDA, J M TAYLOR, A R HARVEY. Multi-aperture Fourier ptychographic microscopy, theory and validation. Optics and Lasers in Engineering, 138, 106410(2021).

    [59] L TIAN, L WALLER. 3D intensity and phase imaging from light field measurements in an LED array microscope. Optica, 2, 104-111(2015).

    [60] R HORSTMEYER, J CHUNG, X OU et al. Diffraction tomography with Fourier ptychography. Optica, 3, 827-835(2016).

    [61] A PAN, B YAO. Three-dimensional space optimization for near-field ptychography. Optics Express, 27, 5433-5446(2019).

    [62] C ZUO, J SUN, A ASUNDI et al. Wide-field high-resolution 3D microscopy with Fourier ptychographic diffraction tomography. Optics and Lasers in Engineering, 128, 106003(2020).

    [63] J LI, A MATLOCK, Y LI et al. Resolution-enhanced intensity diffraction tomography in high numerical aperture label-free microscopy. Photonics Research, 8, 1818-1826(2020).

    [64] N ZHOU, J LI, J SUN et al. Single-exposure 3D label-free microscopy based on color-multiplexed intensity diffraction tomography. Optics Letters, 47, 969-972(2022).

    [65] P THIBAULT, A MENZEL. Reconstructing state mixtures from diffraction measurements. Nature, 494, 68-71(2013).

    [66] J ZHONG, T LEI, J DAUWELS et al. et al 2014 Partially coherent phase imaging with simultaneous source recovery. Biomedical Optics Express, 6, 257-265(2014).

    [67] S DONG, R SHIRADKAR, P NANDA et al. Spectral multiplexing and coherent-state decomposition in Fourier ptychographic imaging. Biomedical Optics Express, 5, 1757-1767(2014).

    [68] R KARL, C BEVIS, R LOPEZ-RIOS et al. Spatial, spectral, and polarization multiplexed ptychography. Optics Express, 23, 30250-30258(2015).

    [69] J DENG, Y NASHED, S CHEN et al. Continuous motion scan ptychography: characterization for increased speed in coherent x-ray imaging. Optics Express, 23, 5438-5451(2015).

    [70] P LI, T EDO, D BATEY et al. Breaking ambiguities in mixed state ptychography. Optics Express, 24, 9038-9052(2016).

    [71] S DONG, K GUO, S JIANG et al. Recovering higher dimensional image data using multiplexed structured illumination. Optics Express, 23, 30393-30398(2015).

    [72] J SUN, Q CHEN, Y ZHANG et al. Sampling criteria for Fourier ptychographic microscopy in object space and frequency space. Optics Express, 24, 15765-15781(2016).

    [73] Y ZHOU, J WU, Z BIAN et al. Fourier ptychographic microscopy using wavelength multiplexing. Journal of Biomedical Optics, 22, 066006(2017).

    [74] M WANG, Y ZHANG, Q CHEN et al. A color-corrected strategy for information multiplexed Fourier ptychographic imaging. Optics Communications, 405, 406-411(2017).

    [75] K WAKONIG, A DIAZ, A BONNIN et al. X-ray Fourier ptychography. Science Advances, 5, eaav0282(2019).

    [76] Y GAO, J CHEN, A WANG et al. High-throughput fast full-color digital pathology based on Fourier ptychographic microscopy via color transfer. Science China-Physics Mechanics & Astronomy, 64, 114211(2021).

    [77] L LOETGERING, X LIU, A DE BEURS et al. Extreme ultraviolet multispectral ptychography with minimum entropy beams. Optica, 8, 130-138(2021).

    [78] X YANG, P C KONDA, S XU et al. Quantized Fourier ptychography with binary images from SPAD cameras. Photonics Research, 9, 1985-1969(2021).

    [79] C KUANG, Y MA, R ZHOU et al. Digital micromirror device-based laser-illumination Fourier ptychographic microscopy. Optics Express, 23, 26999-27010(2015).

    [80] J CHUNG, H LU, X OU et al. Wide-field Fourier ptychographic microscopy using laser illumination source. Biomedical Optics Express, 7, 4787-4802(2016).

    [81] S CHOWDHURY, M CHEN, R ECKERT et al. High-resolution 3D refractive index microscopy of multiple-scattering samples from intensity images. Optica, 6, 1211-1219(2019).

    [82] K GUO, Z BIAN, S DONG et al. Microscopy illumination engineering using a low-cost liquid crystal display. Biomedical Optics Express, 6, 574-579(2015).

    [83] S DONG, R HORSTMEYER, R SHIRADKAR et al. Aperture-scanning Fourier ptychography for 3D refocusing and super-resolution macroscopic imaging. Optics Express, 22, 13586-13599(2014).

    [84] X OU, J CHUNG, R HORSTMEYER et al. Aperture scanning Fourier ptychographic microscopy. Biomedical Optics Express, 7, 3140-3150(2016).

    [85] P SONG, S JIANG, H ZHANG et al. Super-resolution microscopy via ptychographic structured modulation of a diffuser. Optics Letters, 44, 3645-3648(2019).

    [86] H ZHANG, S JIANG, J LIAO et al. Near-field Fourier ptychography: super-resolution phase retrieval via speckle illumination. Optics Express, 27, 7498-7512(2019).

    [87] S DONG, P NANDA, K GUO et al. Incoherent Fourier ptychographic photography using structured light. Photonics Research, 3, 19-23(2015).

    [88] S DONG, P NANDA, R SHIRADKAR et al. High-resolution fluorescence imaging via pattern-illuminated Fourier ptychography. Optics Express, 22, 20856-20870(2014).

    [89] K GUO, Z ZHANG, S JIANG et al. 13-fold resolution gain through turbid layer via translated unknown speckle illumination. Biomedical Optics Express, 9, 260-274(2018).

    [90] M ZHOU, R LI, T PENG et al. Retrieval of non-sparse objects through scattering media beyond the memory effect. Journal of Optics, 22, 085606(2020).

    [91] S DONG, K GUO, P NANDA et al. FPscope: a field-portable high-resolution microscope using a cellphone lens. Biomedical Optics Express, 5, 3305-3310(2014).

    [92] S PACHECO, B SALAHIEH, T MILSTER et al. Transfer function analysis in epi-illumination Fourier ptychography. Optics Letters, 40, 5343-5346(2015).

    [93] K GUO, S DONG, G ZHENG. Fourier ptychography for brightfield, darkfield, reflective, multi-slice, and fluorescence imaging. IEEE Journal of Selected Topics in Quantum Electronics, 22, 77-88(2016).

    [94] S PACHECO, G ZHENG, R LIANG. Reflective Fourier ptychography. Journal of Biomedical Optics, 21, 026010(2016).

    [95] H LEE, B H CHON, H K AHN. Reflective Fourier ptychographic microscopy using a parabolic mirror. Optics Express, 27, 34382-34391(2019).

    [96] Z LI, J ZHANG, X WANG et al. High resolution integral holography using Fourier ptychographic approach. Optics Express, 22, 31935-31947(2014).

    [97] L H YEH, S CHOWDHURY, L WALLER. Computational structured illumination for high-content fluorescence and phase microscopy. Biomedical Optics Express, 10, 1978-1998(2019).

    [98] L H YEH, S CHOWDHURY, N A REPINA et al. Speckle-structured illumination for 3D phase and fluorescence computational microscopy. Biomedical Optics Express, 10, 3635-3653(2019).

    [99] Z LIU, L TIAN, S LIU et al. Real-time brightfield, darkfield, and phase contrast imaging in a light-emitting diode array microscope. Journal of Biomedical Optics, 19, 106002(2014).

    [100] T AIDUKAS, R ECKERT, R A HARVEY et al. Low-cost, sub-micron resolution, wide-field computational microscopy using opensource hardware. Scientific Reports, 9, 7457(2019).

    [101] J CHUNG, J KIM, X OU et al. Wide field-of-view fluorescence image deconvolution with aberration-estimation from Fourier ptychography. Biomedical Optics Express, 7, 352-368(2016).

    [102] X OU, R HORSTMEYER, C YANG et al. Quantitative phase imaging via Fourier ptychographic microscopy. Optics Letters, 38, 4845-4848(2013).

    [103] L TIAN, L WALLER. Quantitative differential phase contrast imaging in an LED array microscope. Optics Express, 23, 11394-11403(2015).

    [104] H LU, J CHUNG, X OU et al. Quantitative phase imaging and complex field reconstruction by pupil modulation differential phase contrast. Optics Express, 24, 25345-25361(2016).

    [105] C SHEN, M LIANG, A PAN et al. Non-iterative complex wave-field reconstruction based on Kramers-Kronig relations. Photonics Research, 9, 1003-1012(2021).

    [106] C GUO, Z BIAN, S JIANG et al. OpenWSI: a low-cost, high-throughput whole slide imaging system via single-frame autofocusing and open-source hardware. Optics Letters, 45, 260-263(2020).

    [107] J HUANG, A PAN, H JIN et al. Non-interferometric accurate phase imaging via linear-convergence iterative optimization. Optics and Lasers in Engineering, 144, 106630(2021).

    [108] J KIM, B M HENLEY, C H KIM et al. Incubator embedded cell culture imaging system (EmSight) based on Fourier ptychographic microscopy. Biomedical Optics Express, 7, 3097-3110(2016).

    [109] A CHAN, J KIM, A PAN et al. Parallel Fourier ptychographic microscopy for high-throughput screening with 96 cameras (96 Eyes). Scientific Reports, 9, 11114(2019).

    [110] A WILLIAMS, J CHUNG, X OU et al. Fourier ptychographic microscopy for filtration-based circulating tumor cell enumeration and analysis. Journal of Biomedical Optics, 19, 066007(2014).

    [111] J CHUNG, G W MARTINEZ, K C LENCIONI et al. Computational aberration compensation by coded-aperture-based correction of aberration obtained from optical Fourier coding and blur estimation. Optica, 6, 647-661(2019).

    [112] C SHEN, A CHAN, J CHUNG et al. Computational aberration correction of VIS-NIR multispectral imaging microscopy based on Fourier ptychography. Optics Express, 27, 24923-24937(2019).

    [113] J ZHANG, Z WANG, T LI et al. 3D object hiding using three-dimensional ptychography. Journal of Optics, 18, 095701(2016).

    [114] A PAN, K WEN, B YAO. Linear space-variant optical cryptosystem via Fourier ptychography. Optics Letters, 44, 2032-2035(2019).

    [115] J HOLLOWAY, M S ASIF, M J SHARMA et al. Toward long-distance subdiffraction imaging using coherent camera arrays. IEEE Transactions on Computational Imaging, 2, 251-265(2016).

    [116] M XIANG, A PAN, Y ZHAO et al. Coherent synthetic aperture imaging for visible remote sensing via reflective Fourier ptychography. Optics Letters, 46, 29-32(2021).

    [117] J M RODENBURG. Advances in Imaging and Electron Physics, 150, 87-184(2008).

    [118] J M RODENBURG, H M L FAULKNER. A phase retrieval algorithm for shifting illumination. Applied Physics Letters, 85, 4795-4797(2004).

    [119] P THIBAULT, M DIEROLF, O BUNK et al. Probe retrieval in ptychographic coherent diffractive imaging. Ultramicroscopy, 109, 338-343(2009).

    [120] A M MAIDEN, J M RODENBURG. An improved ptychographical phase retrieval algorithm for diffractive imaging. Ultramicroscopy, 109, 1256-1262(2009).

    [121] P THIBAULT, M GUIZAR-SICAIROS. Maximum-likelihood refinement for coherent diffractive imaging. New Journal of Physics, 14, 063004(2012).

    [122] S MARCHESINI, H KRISHNAN, B J DAURER et al. SHARP: a distributed GPU-based ptychographic solver. Journal of Applied Crystallography, 49, 1245-1252(2016).

    [123] Z WEN, C YANG, X LIU et al. Alternating direction methods for classical and ptychographic phase retrieval. Inverse Problems, 28, 115010(2012).

    [124] S MARCHESINI, A SCHIROTZEK, C YANG et al. Augmented projections for ptychographic imaging. Inverse Problems, 29, 115009(2013).

    [125] R HORSTMEYER, R Y CHEN, X OU et al. Solving ptychography with a convex relaxation. New Journal of Physics, 17, 053044(2015).

    [126] H CHANG, P ENFEDAQUE, S MARCHESINI. Blind ptychographic phase retrieval via convergent alternating direction method of multipliers. SIAM Journal on Imaging Sciences, 12, 153-185(2019).

    [127] A PAN, M ZHOU, Y ZHANG et al. Adaptive-window angular spectrum algorithm for near-field ptychography. Optics Communications, 430, 73-82(2019).

    [128] S ASLAN, V NIKITIN, D J CHING et al. Joint ptycho-tomography reconstruction through alternating direction method of multipliers. Optics Express, 27, 9128-9143(2019).

    [129] J M RODENBURG, A C HURST, A G CULLIS et al. Hard-X-ray lensless imaging of extended objects. Physical Review Letters, 98, 034801(2007).

    [130] P THIBAULT, M DIEROLF, A MENZEL et al. High-resolution scanning X-ray diffraction microscopy. Science, 321, 379-382(2008).

    [131] M DIEROLF, A MENZEL, P THIBAULT et al. Ptychographic X-ray computed tomography at the nanoscale. Nature, 467, 436-439(2010).

    [132] M GUIZAR-SICAIROS, A DIAZ, M HOLLER et al. Phase tomography from X-ray coherent diffractive imaging projections. Optics Express, 19, 21345-21357(2011).

    [133] M HOLLER, A DIAZ, M GUIZAR-SICAIROS et al. X-ray ptychographic computed tomography at 16 nm isotropic 3D resolution. Scientific Reports, 4, 3857(2014).

    [134] M V HOLT, S O HRUSZKEWYCZ, C E MURRAY et al. Strain imaging of nanoscale semiconductor heterostructures with X-ray Bragg projection ptychography. Physical Review Letters, 112, 165502(2014).

    [135] M STOCKMAR, I ZANETTE, M DIEROLF et al. X-ray near-field ptychography for optically thick specimens. Physical Review Applied, 3, 014005(2015).

    [136] M STOCKMAR, M HUBERT, M DIEROLF et al. X-ray nanotomography using near-field ptychography. Optics Express, 23, 12720-12731(2015).

    [137] J DENG, D J VINE, S CHEN et al. Simultaneous cryo X-ray ptychographic and fluorescence microscopy of green algae. Proceedings of the National Academy of Sciences of the United States of America, 112, 2314-2319(2015).

    [138] S HRUSZKEWYCZ, M ALLAIN, M HOLT et al. High-resolution three-dimensional structural microscopy by single-angle Bragg ptychography. Nature Mater, 16, 244-251(2017).

    [139] M HOLLER, M GUIZAR-SICAIROS, E TSAI et al. High-resolution non-destructive three-dimensional imaging of integrated circuits. Nature, 543, 402-406(2017).

    [140] P FRANZ. X-ray ptychography. Nature Photonics, 12, 9-17(2018).

    [141] A M MAIDEN, J M RODENBURG, M J HUMPHRY. Optical ptychography: a practical implementation with useful resolution. Optics Letters, 35, 2585-2587(2010).

    [142] Y SHI, T LI, Y WANG et al. Optical image encryption via ptychography. Optics Letters, 38, 1425-1427(2013).

    [143] M ODSTRCIL, J BUSSMANN, D RUDOLF et al. Ptychographic imaging with a compact gas–discharge plasma extreme ultraviolet light source. Optics Letters, 40, 5574-5577(2015).

    [144] P SIDORENKO, O COHEN. Single-shot ptychography. Optica, 3, 9-14(2016).

    [145] R HORSTMEYER, C YANG. A phase space model of Fourier ptychographic microscopy. Optics Express, 22, 338-358(2014).

    [146] M N LANDAUER. Indirect modes of coherent imaging in high-resolution transmission electron microscopy(1996).

    [147] C J SCHWARZ, Y KUZNETSOVA, S R J BRUECK. Imaging interferometric microscopy. Optics Letters, 28, 1424-1426(2003).

    [148] Y KUZNETSOVA, A NEUMANN, S R J BRUECK. Imaging interferometric microscopy. Journal of the Optical Society of America A, 25, 811-822(2008).

    [149] M P EDGAR, G M GIBSON, M J PADGETT. Principles and prospects for single-pixel imaging. Nature Photonics, 13, 13-20(2019).

    [150] G BARBASTATHIS, A OZCAN, G SITU. On the use of deep learning for computational imaging. Optica, 6, 921-943(2019).

    [151] L BARISONI, K J LAFATA, S M HEWITT et al. Digital pathology and computational image analysis in nephropathology. Nature Reviews Nephrology, 16, 669-685(2020).

    [152] D FACCIO, A VELTEN, G WETZSTEIN. Non-line-of-sight imaging. Nature Reviews Physics, 2, 318-327(2020).

    [153] D DAN, M LEI, B YAO et al. DMD-based LED-illumination Super-resolution and optical sectioning microscopy. Scientific Reports, 3, 1116(2013).

    [154] D DAN, B YAO, M LEI. Structured illumination microscopy for super-resolution and optical sectioning. Chinese Science Bulletin, 59, 1291-1307(2014).

    [155] J QIAN, M LEI, D DAN et al. Full-color structured illumination optical sectioning microscopy. Scientific Reports, 5, 14513(2015).

    [156] J LIAO, Y JIANG, Z BIAN et al. Rapid focus map surveying for whole slide imaging with continuous sample motion. Optics Letters, 42, 3379-3382(2017).

    [157] Z BIAN, C GUO, S JIANG et al. Autofocusing technologies for whole slide imaging and automated microscopy. Journal of Biophotonics, 13, e202000227(2020).

    [158] X DAI, S XU, X YANG et al. Quantitative Jones matrix imaging using vectorial Fourier ptychography. arXiv preprint, arXiv(2021).

    [159] View Research . Digital Pathology Market Size & Trends Report, 2030. https://www.grandviewresearch.com/industry-analysis/digital-pathology-systems-market

    [161] Y RIVENSON, H WANG, Z WEI et al. Virtual histological staining of unlabelled tissue-autofluorescence images via deep learning. Nature Biomedical Engineering, 3, 466-477(2019).

    [162] Y RIVENSON, T LIU, Z WEI et al. PhaseStain: the digital staining of label-free quantitative phase microscopy images using deep learning. Light: Science & Applications, 8, 23(2019).

    [163] Y ZHANG, K HAAN, Y RIVENSON et al. Digital synthesis of histological stains using micro-structured and multiplexed virtual staining of label-free tissue. Light: Science & Applications, 9, 78(2020).

    [164] K HAAN, Y ZHANG, J E ZUCKERMAN et al. Deep learning-based transformation of H&E stained tissues into special stains. Nature Communications, 12, 4884(2021).

    [165] Y RIVENSON, K HAAN, W D WALLACE et al. Emerging advances to transform histopathology using virtual staining. BME Frontiers, 2020, 9647163(2020).

    [166] G CAMPANELLA, M G HANNA, L GENESLAW et al. Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nature Medicine, 25, 1301-1309(2019).

    [167] Z ZHANG, P CHEN, M MCGOUGH et al. Pathologist-level interpretable whole-slide cancer diagnosis with deep learning. Nature Machine Intelligence, 1, 236-245(2019).

    [168] G WETZSTEIN, A OZCAN, S GIGAN et al. Inference in artificial intelligence with deep optics and photonics. Nature, 588, 39-47(2020).

    [169] T LIU, Z WEI, Y RIVENSON et al. Deep learning-based color holographic microscopy. Journal of Biophotonics, 12, e201900107(2019).

    [170] K HAAN, Y RIVENSON, Y WU et al. Deep-Learning-Based Image Reconstruction and Enhancement in Optical Microscopy. Proceedings of the IEEE, 108, 30-50(2020).

    [171] J LI, J GARFINKEL, X ZHANG et al. Biopsy-free in vivo virtual histology of skin using deep learning. Light: Science & Applications, 10, 233(2021).

    [172] I JANSEN, M LUCAS, C D SAVCI-HEIJINK et al. Histopathology: ditch the slides, because digital and 3D are on show. World Journal of Urology, 36, 549-555(2018).

    [173] N GUO, W XIONG, Q WU et al. An efficient tile-pyramids building method for fast visualization of massive geospatial raster datasets. Advances in Electrical and Computer Engineering, 16, 3-8(2016).

    An PAN, Yuting GAO, Aiye WANG, Huiqin GAO, Caiwen MA, Baoli YAO. High-throughput Full-color Fourier Ptychographic Microscopy for the Next Generation of Digital Pathologic Imager and Analyser(Invited)[J]. Acta Photonica Sinica, 2022, 51(7): 0751408
    Download Citation