• Photonics Research
  • Vol. 10, Issue 2, 550 (2022)
Shuailong Zhang1、2、3、4、5、9、*, Mohamed Elsayed4、5, Ran Peng6, Yujie Chen7, Yanfeng Zhang7, Steven L. Neale8, and Aaron R. Wheeler3、4、5、10、*
Author Affiliations
  • 1School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
  • 2Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China
  • 3Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
  • 4Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
  • 5Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
  • 6Department of Marine Engineering, Dalian Maritime University, Dalian 116026, China
  • 7State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
  • 8James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
  • 9e-mail: shuailong.zhang@bit.edu.cn
  • 10e-mail: aaron.wheeler@utoronto.ca
  • show less
    DOI: 10.1364/PRJ.437528 Cite this Article Set citation alerts
    Shuailong Zhang, Mohamed Elsayed, Ran Peng, Yujie Chen, Yanfeng Zhang, Steven L. Neale, Aaron R. Wheeler. Influence of light pattern thickness on the manipulation of dielectric microparticles by optoelectronic tweezers[J]. Photonics Research, 2022, 10(2): 550 Copy Citation Text show less
    References

    [1] P. Y. Chiou, A. T. Ohta, M. C. Wu. Massively parallel manipulation of single cells and microparticles using optical images. Nature, 436, 370-372(2005).

    [2] M. C. Wu. Optoelectronic tweezers. Nat. Photonics, 5, 322-324(2011).

    [3] M. Woerdemann, C. Alpmann, M. Esseling, C. Denz. Advanced optical trapping by complex beam shaping. Laser Photon. Rev., 7, 839-854(2013).

    [4] Y. Huang, Z. Liang, M. Alsoraya, J. Guo, D. Fan. Light-gated manipulation of micro/nanoparticles in electric fields. Adv. Intell. Syst., 2, 1900127(2020).

    [5] H. Hwang, J. K. Park. Optoelectrofluidic platforms for chemistry and biology. Lab Chip, 11, 33-47(2011).

    [6] S. Zhang, Y. Liu, J. Juvert, P. Tian, J. C. Navaro, J. M. Cooper, S. L. Neale. Use of optoelectronic tweezers in manufacturing accurate solder bead positioning. Appl. Phys. Lett., 109, 221110(2016).

    [7] S. Zhang, J. Juvert, J. M. Cooper, S. L. Neale. Manipulating and assembling metallic beads with optoelectronic tweezers. Sci. Rep., 6, 32840(2016).

    [8] S. Zhang, Y. Zhai, R. Peng, M. Shayegannia, A. G. Flood, J. Qu, X. Liu, N. P. Kherani, A. R. Wheeler. Assembly of topographical micropatterns with optoelectronic tweezers. Adv. Opt. Mater., 7, 1900669(2019).

    [9] S. Zhang, E. Y. Scott, J. Singh, Y. Chen, Y. Zhang, M. Elsayed, M. D. Chamberlain, N. Shakiba, K. Adams, S. Yu, C. M. Morshead, P. W. Zandstra, A. R. Wheeler. The optoelectronic microrobot: a versatile toolbox for micromanipulation. Proc. Natl. Acad. Sci. USA, 116, 14823-14828(2019).

    [10] D. Han, J. K. Park. Optoelectrofluidic enhanced immunoreaction based on optically-induced dynamic AC electroosmosis. Lab Chip, 16, 1189-1196(2016).

    [11] D. Han, J. K. Park. Microarray-integrated optoelectrofluidic immunoassay system. Biomicrofluidics, 10, 034106(2016).

    [12] Y. H. Lin, C. M. Chang, G. B. Lee. Manipulation of single DNA molecules by using optically projected images. Opt. Express, 17, 15318-15329(2009).

    [13] Y. Zhang, J. Zhao, H. Yu, P. Li, W. Liang, Z. Liu, G. B. Lee, L. Liu, W. J. Li, Z. Wang. Detection and isolation of free cancer cells from ascites and peritoneal lavages using optically induced electrokinetics (OEK). Sci. Adv., 6, eaba9628(2020).

    [14] S. Zhang, N. Shakiba, Y. Chen, Y. Zhang, P. Tian, J. Singh, M. D. Chamberlain, M. Satkauskas, A. G. Flood, N. P. Kherani, S. Yu, P. W. Zandstra, A. R. Wheeler. Patterned optoelectronic tweezers: a new scheme for selecting, moving, and storing dielectric particles and cells. Small, 14, 1803342(2018).

    [15] S. Xie, X. Wang, N. Jiao, S. Tung, L. Liu. Programmable micrometer-sized motor array based on live cells. Lab Chip, 17, 2046-2053(2017).

    [16] A. T. Ohta, M. Garcia, J. K. Valley, L. Banie, H. Y. Hsu, A. Jamshidi, S. L. Neale, T. Lue, M. C. Wu. Motile and non-motile sperm diagnostic manipulation using optoelectronic tweezers. Lab Chip, 10, 3213-3217(2010).

    [17] S. B. Huang, M. H. Wu, Y. H. Lin, C. H. Hsieh, C. L. Yang, H. C. Lin, C. P. Tseng, G. B. Lee. High-purity and label-free isolation of circulating tumor cells (CTCs) in a microfluidic platform by using optically-induced-dielectrophoretic (ODEP) force. Lab Chip, 13, 1371-1383(2013).

    [18] L. Y. Ke, Z. K. Kuo, Y. S. Chen, T. Y. Yeh, M. Dong, H. W. Tseng, C. H. Liu. Cancer immunotherapy μ-environment LabChip: taking advantage of optoelectronic tweezers. Lab Chip, 18, 106-114(2018).

    [19] Y. Yang, Y. Mao, K. S. Shin, C. O. Chui, P. Y. Chiou. Self-locking optoelectronic tweezers for single-cell and microparticle manipulation across a large area in high conductivity media. Sci. Rep., 6, 22630(2016).

    [20] A. H. Jeorrett, S. L. Neale, D. Massoubre, E. Gu, R. K. Henderson, O. Millington, K. Mathieson, M. D. Dawson. Optoelectronic tweezers system for single cell manipulation and fluorescence imaging of live immune cells. Opt. Express, 22, 1372-1380(2014).

    [21] A. Jamshidi, S. L. Neale, K. Yu, P. J. Pauzauskie, P. J. Schuck, J. K. Valley, H.-Y. Hsu, A. T. Ohta, M. C. Wu. Nanopen: dynamic, low-power, and light-actuated patterning of nanoparticles. Nano Lett., 9, 2921-2925(2009).

    [22] S. J. Lin, S. H. Hung, J. Y. Jeng, T. F. Guo, G. B. Lee. Manipulation of micro-particles by flexible polymer-based optically-induced dielectrophoretic devices. Opt. Express, 20, 583-592(2012).

    [23] M. B. Lim, R. G. Felsted, X. Zhou, B. E. Smith, P. J. Pauzauskie. Patterning of graphene oxide with optoelectronic tweezers. Appl. Phys. Lett., 113, 031106(2018).

    [24] S. Liang, Y. Cao, Y. Dai, F. Wang, X. Bai, B. Song, C. Zhang, C. Gan, F. Arai, L. Feng. A versatile optoelectronic tweezer system for micro-objects manipulation: transportation, patterning, sorting, rotating and storage. Micromachines, 12, 271(2021).

    [25] S. Zhang, W. Li, M. Elsayed, P. Tian, A. W. Clark, A. R. Wheeler, S. L. Neale. Size-scaling effects for microparticles and cells manipulated by optoelectronic tweezers. Opt. Lett., 44, 4171-4174(2019).

    [26] M. A. Zaman, P. Padhy, Y. T. Cheng, L. Galambos, L. Hesselink. Optoelectronic tweezers with a non-uniform background field. Appl. Phys. Lett., 117, 171102(2020).

    [27] A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. Yang, M. C. Wu. Dynamic manipulation and separation of individual semiconducting and metallic nanowires. Nat. Photonics, 2, 86-89(2008).

    [28] Y. H. Lin, K. S. Ho, C. T. Yang, J. H. Wang, C. S. Lai. A highly flexible platform for nanowire sensor assembly using a combination of optically induced and conventional dielectrophoresis. Opt. Express, 22, 13811-13824(2014).

    [29] H. Hwang, D. Han, Y. J. Oh, Y. K. Cho, K. H. Jeong, J. K. Park. In situ dynamic measurements of the enhanced SERS signal using an optoelectrofluidic SERS platform. Lab Chip, 11, 2518-2525(2011).

    [30] M. B. Lim, J. L. Hanson, L. Vandsburger, P. B. Roder, X. Zhou, B. E. Smith, F. S. Ohuchi, P. J. Pauzauskie. Copper-and chloride-mediated synthesis and optoelectronic trapping of ultra-high aspect ratio palladium nanowires. J. Mater. Chem. A, 6, 5644-5651(2018).

    [31] S. Zhang, Y. Liu, Y. Qian, W. Li, J. Juvert, P. Tian, J. C. Navarro, A. W. Clark, E. Gu, M. D. Dawson, J. M. Cooper, S. L. Neale. Manufacturing with light-micro-assembly of opto-electronic microstructures. Opt. Express, 25, 28838-28850(2017).

    [32] M. C. Tien, A. T. Ohta, K. Yu, S. L. Neale, M. C. Wu. Heterogeneous integration of InGaAsP microdisk laser on a silicon platform using optofluidic assembly. Appl. Phys. A, 95, 967-972(2009).

    [33] J. Juvert, S. Zhang, I. Eddie, C. J. Mitchell, G. T. Reed, J. S. Wilkinson, A. Kelly, S. L. Neale. Micromanipulation of InP lasers with optoelectronic tweezers for integration on a photonic platform. Opt. Express, 24, 18163-18175(2016).

    [34] https://www.berkeleylights.com/. https://www.berkeleylights.com/

    [35] W. Liang, S. Wang, Z. Dong, G. B. Lee, W. J. Li. Optical spectrum and electric field waveform dependent optically-induced dielectrophoretic (ODEP) micro-manipulation. Micromachines, 3, 492-508(2012).

    [36] J. K. Valley, A. Jamshidi, A. T. Ohta, H. Y. Hsu, M. C. Wu. Operational regimes and physics present in optoelectronic tweezers. J. Microelectromech. Syst., 17, 342-350(2008).

    [37] R. Pethig. Dielectrophoresis: status of the theory, technology, and applications. Biomicrofluidics, 4, 022811(2010).

    [38] S. L. Neale, M. Mazilu, J. I. B. Wilson, K. Dholakia, T. F. Krauss. The resolution of optical traps created by light induced dielectrophoresis (LIDEP). Opt. Express, 15, 12619-12626(2007).

    [39] N. Liu, Y. Lin, Y. Peng, L. Xin, T. Yue, Y. Liu, C. Ru, S. Xie, L. Dong, H. Pu, H. Chen, W. J. Li, Y. Sun. Automated parallel electrical characterization of cells using optically-induced dielectrophoresis. IEEE Trans. Autom. Sci. Eng., 17, 1084-1092(2020).

    [40] S. Zhang, A. Nikitina, Y. Chen, Y. Zhang, L. Liu, A. G. Flood, J. Juvert, M. D. Chamberlain, N. P. Kherani, S. L. Neale, A. R. Wheeler. Escape from an optoelectronic tweezer trap: experimental results and simulations. Opt. Express, 26, 5300-5309(2018).

    [41] W. Liang, L. Liu, H. Zhang, Y. Wang, W. J. Li. Optoelectrokinetics-based microfluidic platform for bioapplications: a review of recent advances. Biomicrofluidics, 13, 051502(2019).

    [42] Y. H. Lin, G. B. Lee. Optically induced flow cytometry for continuous microparticle counting and sorting. Biosens. Bioelectron., 24, 572-578(2008).

    [43] Y. S. Chen, C. P. K. Lai, C. Chen, G. B. Lee. Isolation and recovery of extracellular vesicles using optically-induced dielectrophoresis on an integrated microfluidic platform. Lab Chip, 21, 1475-1483(2021).

    [44] C. Witte, J. Reboud, J. M. Cooper, S. L. Neale. Channel integrated optoelectronic tweezer chip for microfluidic particle manipulation. J. Micromech. Microeng., 30, 045004(2020).

    [45] T. K. Chiu, W. P. Chou, S. B. Huang, H. M. Wang, Y. C. Lin, C. H. Hsieh, M. H. Wu. Application of optically-induced-dielectrophoresis in microfluidic system for purification of circulating tumour cells for gene expression analysis-cancer cell line model. Sci. Rep., 6, 32851(2016).

    [46] W. P. Chou, H. M. Wang, J. H. Chang, T. K. Chiu, C. H. Hsieh, C. J. Liao, M. H. Wu. The utilization of optically-induced-dielectrophoresis (ODEP)-based virtual cell filters in a microfluidic system for continuous isolation and purification of circulating tumour cells (CTCs) based on their size characteristics. Sens. Actuators B Chem., 241, 245-254(2017).

    [47] S. Zhang, M. Elsayed, R. Peng, Y. Chen, Y. Zhang, J. Peng, W. Li, M. D. Chamberlain, A. Nikitina, S. Yu, X. Liu, S. L. Neale, A. R. Wheeler. Reconfigurable multi-component micromachines driven by optoelectronic tweezers. Nat. Commun., 12, 5349(2021).

    Shuailong Zhang, Mohamed Elsayed, Ran Peng, Yujie Chen, Yanfeng Zhang, Steven L. Neale, Aaron R. Wheeler. Influence of light pattern thickness on the manipulation of dielectric microparticles by optoelectronic tweezers[J]. Photonics Research, 2022, 10(2): 550
    Download Citation