• Laser & Optoelectronics Progress
  • Vol. 58, Issue 16, 1617002 (2021)
Qianhong Cai, Yuhong Liu, and Rongfen Zhang*
Author Affiliations
  • College of Big Data and Information Engineering, Guizhou University, Guiyang, Guizhou 550025, China
  • show less
    DOI: 10.3788/LOP202158.1617002 Cite this Article Set citation alerts
    Qianhong Cai, Yuhong Liu, Rongfen Zhang. Two-Stage Retinal Vessel Segmentation Based on Improved U-Net[J]. Laser & Optoelectronics Progress, 2021, 58(16): 1617002 Copy Citation Text show less
    References

    [1] Baker M L, Hand P J, Wang J J et al. Retinal signs and stroke:revisiting the link between the eye and brain[J]. Stroke, 39, 1371-1379(2008).

    [2] Chaudhuri S, Chatterjee S, Katz N et al. Detection of blood vessels in retinal images using two-dimensional matched filters[J]. IEEE Transactions on Medical Imaging, 8, 263-269(1989).

    [3] Fraz M M, Basit A, Barman S A. Application of morphological bit planes in retinal blood vessel extraction[J]. Journal of Digital Imaging, 26, 274-286(2013).

    [4] Imani E, Javidi M, Pourreza H R. Improvement of retinal blood vessel detection using morphological component analysis[J]. Computer Methods and Programs in Biomedicine, 118, 263-279(2015).

    [5] Wang W H, Zhang J Z, Wu W Y. New approach to segment retinal vessel using morphology and Otsu[J]. Application Research of Computers, 36, 2228-2231(2019).

    [6] Roychowdhury S, Koozekanani D D, Parhi K K. Iterative vessel segmentation of fundus images[J]. IEEE Transactions on Biomedical Engineering, 62, 1738-1749(2015).

    [7] Mapayi T, Viriri S, Tapamo J R. Adaptive thresholding technique for retinalvessel segmentation based on GLCM-energy information[J]. Computational and Mathematical Methods in Medicine, 2015, 1-11(2015).

    [8] Yin Y, Adel M, Bourennane S. Automatic segmentation and measurement of vasculature in retinal fundus images using probabilistic formulation[J]. Computational and Mathematical Methods in Medicine, 2013, 260410(2013).

    [9] Emary E, Zawbaa H M, Hassanien A E et al. Retinal vessel segmentation based on possibilistic fuzzy C-means clustering optimised with cuckoo search[C]. //2014 International Joint Conference on Neural Networks (IJCNN), July 6-11, 2014, Beijing, China., 1792-1796(2014).

    [10] Zhu Z L, Wang J F. Image segmentation based on adaptive fuzzy C-means and post processing correction[J]. Laser & Optoelectronics Progress, 55, 011004(2018).

    [11] Xiao Z, Adel M, Bourennane S. Bayesian method with spatial constraint for retinal vessel segmentation[J]. Computational and Mathematical Methods in Medicine, 2013, 401413(2013).

    [12] Salazar-Gonzalez A, Kaba D, Li Y M et al. Segmentation of blood vessels and optic discin retinal images[J]. IEEE Journal of Biomedical medical and Health Informatics, 18, 1874-1886(2014).

    [13] Fraz M M, Remagnino P, Hoppe A et al. An ensemble classification-based approach applied to retinal blood vessel segmentation[J]. IEEE Transactions on Biomedical Engineering, 59, 2538-2548(2012).

    [14] Orlando J I, Prokofyeva E, Blaschko M B. Discriminatively trained fully connected conditional random field model for blood vessel segmentation in fundus images[J]. IEEE Transactions on Biomedical Engineering, 64, 16-27(2016).

    [15] Wang S L, Yin Y L, Cao G B et al. Hierarchical retinal blood vessel segmentation based on feature and ensemble learning[J]. Neurocomputing, 149, 708-717(2015).

    [16] Liskowski P, Krawiec K. Segmenting retinal blood vessels with deep neural networks[J]. IEEE Transactions on Medical Imaging, 35, 2369-2380(2016).

    [17] Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation[M]. //Navab N, Hornegger J, Wells W M, et al. Medical image computing and computer-assisted intervention-MICCAI 2015. Lecture notes in computer science, 9351, 234-241(2015).

    [18] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[J]. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 7-12, 2015, Boston, MA, USA., 3431-3440(2015).

    [19] Khanal A, Estrada R. Dynamic deep networks for retinal vessel segmentation[EB/OL]. (2019-03-19)[2020-05-17]. https://arxiv.org/abs/1903.07803

    [20] Jiang Y, Tan N. Retinal vessel segmentation based on conditional deep convolutional generative adversarial networks[EB/OL]. (2018-05-01)[2019-03-21]. https://arxiv.org/abs/1805.04224

    [21] Zhuang J T. LadderNet: multi-path networks based on U-Net for medical image segmentation[EB/OL]. (2018-10-17)[2019-08-28]. https: //arxiv.org/abs/1810.07810

    [22] Jin Q G, Meng Z P, Pham T D et al. DUNet: a deformable network for retinal vessel segmentation[J]. Knowledge-Based Systems, 178, 149-162(2019).

    [23] He K M, Zhang X Y, Ren S Q et al. Deep residual learning for image recognition[C]. //2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA., 770-778(2016).

    [24] Zheng T Y, Tang C, Lei Z K. Multi-scale retinal vessel segmentation based on fully convolutional neural network[J]. Acta Optica Sinica, 39, 0211002(2019).

    [25] Alom M Z, Yakopcic C, Hasan M et al. Recurrent residual U-Net for medical image segmentation[J]. Journal of Medical Imaging, 6, 014006(2019).

    [26] Xue W X, Liu J X, Liu R et al. An improved method for retinal vascular segmentation in U-Net[J]. Acta Optica Sinica, 40, 1210001(2020).

    [27] Staal J, Abramoff M D, Niemeijer M et al. Ridge-based vessel segmentation in color images of the retina[J]. IEEE Transactions on Medical Imaging, 23, 501-509(2004).

    [28] Hoover A D, Kouznetsova V, Goldbaum M. Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response[J]. IEEE Transactions on Medical Imaging, 19, 203-210(2000).

    [29] Li D X, Zhang Z. Improved U-Net segmentation algorithm for the retinal blood vessel images[J]. Acta Optica Sinica, 40, 1010001(2020).

    Qianhong Cai, Yuhong Liu, Rongfen Zhang. Two-Stage Retinal Vessel Segmentation Based on Improved U-Net[J]. Laser & Optoelectronics Progress, 2021, 58(16): 1617002
    Download Citation