• Journal of Inorganic Materials
  • Vol. 36, Issue 8, 883 (2021)
Aochen DU1、2, Qiyuan DU3, Xin LIU2、4, Yimin YANG1、2, Chenyang XIA1, Jun ZOU3, and Jiang LI2、4、*
Author Affiliations
  • 11. School of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130118, China
  • 22. Key Laboratory of Transparent Opto-functional Inorganic Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 201899, China
  • 33. School of Science, Shanghai Institute of Technology, Shanghai, 201418, China
  • 44. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.15541/jim20200727 Cite this Article
    Aochen DU, Qiyuan DU, Xin LIU, Yimin YANG, Chenyang XIA, Jun ZOU, Jiang LI. Ce:YAG Transparent Ceramics Enabling High Luminous Efficacy for High-power LEDs/LDs[J]. Journal of Inorganic Materials, 2021, 36(8): 883 Copy Citation Text show less
    References

    [1] F ZHENG, W MAO Y, B YANG B et al. Laser lighting device based on YAG:Ce3+ phosphor composite Eu3+ doped phosphor-in- glasses. Chinese Journal of Luminescence, 40, 842-848(2019).

    [2] F ZHANG J, R GU G, X DI X et al. Optical characteristics of Ce,Eu:YAG single crystal grown by Czochralski method. Journal of Rare Earths, 37, 145-150(2019).

    [3] C SHAO X, M ZHOU S, R TANG Y et al. Luminescence characteristics of Ce:YAG ceramic phosphors with Gd3+ doping for white light-emitting diodes. Journal of Inorganic Materials, 33, 1119-1123(2018).

    [4] X WANG Z, H LIN, W ZHANG D et al. Deep-red emitting Mg2TiO4:Mn4+ phosphor ceramics for plant lighting. Journal of Advanced Ceramics, 10, 88-97(2020).

    [5] L CHEN S, X JIANG B, Y WANG et al. Fabrication of Ce-doped (Gd2Y)Al5O12/Y3Al5O12 composite-phase scintillation ceramic. Journal of Rare Earths, 37, 978-983(2019).

    [6] H ZHENG Z, X ZHANG, K XU X et al. Thickness and surface roughness effect on lighting performance of Ce3+:YAG transparent ceramics based high power LED and LD lighting prototype devices. Chinese Journal of Luminescence, 41, 1411-1420(2020).

    [7] H HUA, W FENG S, Y YANG Z et al. YAGG:Ce transparent ceramics with high luminous efficiency for solid-state lighting application. Journal of Advanced Ceramics, 8, 389-398(2019).

    [8] X LIU, Y ZHOU H, W HU Z et al. Transparent Ce:GdYAG ceramic color converters for high-brightness white LEDs and LDs. Optical Materials, 88, 97-102(2019).

    [9] J CHO, F SCHUBERT E, K KIM J. Efficiency droop in light-emitting diodes: challenges and countermeasures. Laser & Photonics Reviews, 7, 408-421(2013).

    [10] A BERGH, G CRAFORD, A DUGGAL et al. The promise and challenge of solid-state lighting. Physics Today, 54, 42-47(2001).

    [11] F CAO Y, T HAN, Y YANG J et al. Tunable-spectrum Mn2+ doped garnet transparent ceramics for high-color rendering laser lighting. International Journal of Applied Ceramic Technology, 18, 716-723(2021).

    [12] X LI S, L WANG, N HIROSAKI et al. Color conversion materials for high-brightness laser-driven solid-state lighting. Laser & Photonics Reviews, 12, 1800173-1800203(2018).

    [13] H PAN G, J WU H, S HE et al. Dye-embedded YAG:Ce3+@SiO2 composite phosphors toward warm wLEDs through radiative energy transfer: preparation, characterization and luminescence properties. Nanoscale, 10, 22237-22251(2018).

    [14] H SONG Y, K JI E, W JEONG B et al. High power laser-driven ceramic phosphor plate for outstanding efficient white light conversion in application of automotive lighting. Scientific Reports, 6, 31206-31213(2016).

    [15] B LIN Z, H LIN, J XU et al. Highly thermal-stable warm w-LED based on Ce:YAG PiG stacked with a red phosphor layer. Journal of Alloys and Compounds, 649, 661-665(2015).

    [16] L WANG, R WEI, P ZHENG et al. Realizing high-brightness and ultra-wide-color-gamut laser-driven back lighting by using laminated phosphor-in-glass (PiG) films. Journal of Materials Chemistry C, 8, 1746-1754(2020).

    [17] Q YAO, L ZHANG, J ZHANG et al. Simple mass-preparation and enhanced thermal performance of Ce:YAG transparent ceramics for high power white LEDs. Ceramics International, 45, 6356-6362(2019).

    [18] K WAETZIG, M KUNZER, I KINSKI. Influence of sample thickness and concentration of Ce dopant on the optical properties of YAG:Ce ceramic phosphors for white LEDs. Journal of Materials Research, 29, 2318-2324(2014).

    [19] H LIU G, Z ZHOU Z, Y SHI et al. Ce:YAG transparent ceramics for applications of high power LEDs: thickness effects and high temperature performance. Materials Letters, 139, 480-482(2015).

    [20] M SHANG M, J FAN, Z LIAN H et al. A double substitution of Mg2+-Si4+/Ge4+ for Al(1)(3+)-Al(2)3+ in Ce3+-doped garnet phosphor for white LEDs. Inorganic Chemistry, 53, 7748-7755(2014).

    [21] G AO, R TANG Y, Z YI X et al. Red emission generation in Ce3+/Mn2+ co-doping Y3Al5O12 phosphor ceramics for warm white lighting emitting diodes. Journal of Alloys and Compounds, 798, 695-699(2019).

    [22] J KANG, L ZHANG, B LI Y et al. Luminescence declining behaviors in YAG:Ce transparent ceramics for high power laser lighting. Journal of Materials Chemistry C, 7, 14357-14365(2019).

    [23] G XIA Z, A MEIJERINK. Ce3+-doped garnet phosphors: composition modification, luminescence properties and applications. Chemical Society Reviews, 46, 275-299(2017).

    [24] S LIU, P SUN, F LIU Y et al. Warm white light with a high color-rendering index from a Single Gd3Al4GaO12:Ce3+ transparent ceramic for high-power LEDs and LDs. ACS Applied Materials & Interfaces, 11, 2130-2139(2018).

    [25] P TOLMACHEV R, V TOLMACHEV A. Thermostimulated luminescence from single crystals of modified lithium gadolinium orthoborate Li6-xNaxGd(BO3)3:Ce. Technical Physics Letters, 30, 8-14(2004).

    [26] W ZHANG, C LU T, N WEI et al. Effect of annealing on the optical properties of Nd:YAG transparent ceramics. Optical Materials, 34, 685-690(2012).

    [27] W ZHANG, T LU, Y MA B et al. Improvement of optical properties of Nd:YAG transparent ceramics by post-annealing and post hot isostatic pressing. Optical Materials, 35, 2405-2410(2013).

    [28] J STEVENSON A, C BITTEL B, G LEH C et al. Color center formation in vacuum sintered Nd3xY3-3xAl5O12 transparent ceramics. Applied Physics Letters, 98, 051906-051909(2011).

    [29] Z SONG, L LIU X, Z HE L et al. Correlation between the energy level structure of cerium-doped yttrium aluminum garnet and luminescent behavior at varying temperatures. Materials Research Express, 3, 055501-055509(2016).

    [30] P SUN, P HU, F LIU Y et al. Broadband emissions from Lu2Mg2Al2Si2O12:Ce3+ plate ceramic phosphors enable a high color- rendering index for laser-driven lighting. Journal of Materials Chemistry C, 8, 1405-1412(2020).

    [31] F PAN Z, C CHEN J, Q WU H et al. Red emission enhancement in Ce3+/Mn2+ co-doping suited garnet host MgY2Al4SiO12 for tunable warm white LED. Optical Materials, 72, 257-264(2017).

    [32] W YEH C, T CHEN W, S LIU R et al. Origin of thermal degradation of Sr2-xSi5N8:Eux phosphors in air for light-emitting diodes. Journal of the American Chemical Society, 134, 14108-14117(2012).

    [33] L ZHANG L, S ZHANG, D HAO Z et al. A high efficiency broad-band near-infrared Ca2LuZr2Al3O12:Cr3+ garnet phosphor for blue LED chips. Journal of Materials Chemistry C, 6, 4967-4976(2018).

    [34] C GU, J WANG X, C XIA et al. A new CaF2-YAG:Ce composite phosphor ceramic for high-power and high-color-rendering WLEDs. Journal of Materials Chemistry C, 7, 8569-8574(2019).

    [35] S KIM J, H PARK Y, M KIM S et al. Temperature-dependent emission spectra of M2SiO4:Eu2+(M=Ca, Sr, Ba) phosphors for green and greenish white LEDs. Solid State Communications, 133, 445-448(2005).

    [36] H WANG Y, Y DING J, C WANG Y et al. Structural design of new Ce3+/Eu2+-doped or co-doped phosphors with excellent thermal stabilities for WLEDs. Journal of Materials Chemistry C, 7, 1792-1820(2019).

    Aochen DU, Qiyuan DU, Xin LIU, Yimin YANG, Chenyang XIA, Jun ZOU, Jiang LI. Ce:YAG Transparent Ceramics Enabling High Luminous Efficacy for High-power LEDs/LDs[J]. Journal of Inorganic Materials, 2021, 36(8): 883
    Download Citation